TIMES-Starter Model Guidelines for Use

Prepared for the International Energy Agency's Energy Technology Systems Analysis Program (IEA-ETSAP)

by DecisionWare Group

August 2016

Table of Contents

Table c	of Cont	ents	i
List of I	igures		ii
List of	Tables		iv
1 In	troduc	tion	1
2 0	rganiza	tion of the Model Templates	2
2.1		del Folder Orientation	
2.2		nplate Components	
2.3		necting with the EPA US9r Data	
2.4		nplate Naming Conventions	
		ponent Naming Conventions and Units	
	-	tion of the TIMES-Starter RES	
5 A		t the Input Data Workbooks	
5.1		rgy Balance	
5.2	•	ply	
5.3		ver Sector	
5.	3.1	Organization of the Power Sector Workbooks	
5.	3.2	Electric Sector Naming Conventions and Units	
	3.3	Power Plant Technology Names and Descriptions	
	3.4	Power Plant Technology Data	
	3.5	Calibration of the Initial Year	
5.4		nand Sectors	
	4.1	Agriculture	
_	4.2	Commercial	
	4.3	Industry and Oil Refinery	
_	4.4	Simple Flexible Oil Refinery	
5.	4.5	Residential	
0.	4.6	Transportation	
6 Ca		on of the Base Year	
6.1	Con	nmon Reasons and Remedies for Calibration Issues	
-	1.1	Mis-calibration in demand sectors	.53
6.	1.2	Mis-calibration in power sector	
	1.3	Mis-calibration of supply system	
7 M	-	g Scenarios in ANSWER and Submitting a Model Run	
7.1		dling Updates	
7.2	-	ning Templates with Scenarios	
7.3	•	orting Templates into ANSWER	
7.4		mitting a Model Run	
	, ,	g the Load Duration Curve	
9 Fc	recast	ing Demands	. 60

10 Re	eference Scenario Guidance	63
10.1	The Need to Guide the Reference Scenario	63
10.2	Types of Guidance Mechanisms	64
10.2	.1 Forced operation of existing devices	65
10.2	.2 Market share constraints	66
10.2	.3 Hurdle rates	66
10.2	.4 BOUNDS and GROWTH rates on new technology uptake	67
10.3	A Closer Look at Market Share User Constraints in the TIMES-Starter Model	67
10.4	Considerations for Policy Analysis	71
11 Al	ternate Scenarios Basics	72
11.1	Managing ANSWER Scenarios	73
11.2	Renewable Electricity Portfolio Requirement (SCEN_RPS)	74
	CO2 Targets (Scen_CO2-xx)	
11.4	Final Energy Consumption Reduction (Scen_LIMFEC)	76
11.5	Reduction of Electricity Consumption (SCEN_LIMELC)	77
11.6	GHG Emission Reduction (SCEN_GHG)	77
	Simpler Scenario Handling Directly In ANSWER	
12 TI	MES-Starter VBE Database	78
12.1	TIMES-Starter VBE Sets	79
12.2	TIMES-Starter VBE Tables	81
13 Us	sing the Analytics Results Comparison Graphing Workbook	84
13.1	AnalyticsXLS Graphing Tables	84
13.2	Managing Scenarios	85
13.3	Example Graphing Sheets	87
13.4	Metrics Tables	88
14 Pr	ocedures for Adapting TIMES-Starter	89
14.1	Changing Country Name	90
14.2	Customizing TIMES-Starter for Your Model	90
14.2	.1 Changing Units, Periods and Timeslices { <i>Pending</i> }	90
14.2	.2 Adding New Commodities and Processes	90
14.2	.3 Setup and Calibration	91
14.2	.4 Ready the Reference Scenario	91
14.2	.5 Try some Policy Scenarios	92
14.3	Handling More than one Region {Down the Road}	92
15 So	ome Advanced TIMES Features {VFE DemoS examples – Down the Road}	92

List of Figures

Figure 1: Schematic of Starter Templates Dependencies	.3
Figure 2: Aligning TIMES-Starter & MARKAL US9r Parameters/Data	.6
Figure 3: Demand Device Naming Example - Residential Household Heating Devices	11

Figure 4: Setting USD_Convert for a Particular Sector (Agriculture)	12
Figure 5: Basic RES Organization Principles	13
Figure 6: Backstop Process to Avoid (Most) Infeasible Solutions	14
Figure 7: Energy Balance Sheet	16
Figure 8: Years and Time Slice Data from the EB_Starter Workbook and in ANSWER	17
Figure 9: Sector EB and Commodity Control Sheet	18
Figure 10: Current Supply Energy Carriers	
Figure 11: Imports & Domestic Resources Supply Options	19
Figure 12: Supply Template SETUP Sheet Price/Bound Factors	20
Figure 13: Supply Items Declaration Sheet, and Set Membership Specification Form	20
Figure 14: Supply Options Topology and Product	21
Figure 15: Supply Options Prices	22
Figure 16: Power Sector New Plants Loadsheet	27
Figure 17: Power Sector Calibration Sheet	28
Figure 18: Agriculture New Processes	29
Figure 19: Agriculture New Options Loadsheet	30
Figure 20: Agriculture Calibration Sheet	31
Figure 21: Commercial Sector End-use Applications & Lighting Technology Types	32
Figure 22: New Technology Commercial Loadsheet	32
Figure 23: EB Sheet for Residential and Commercial	34
Figure 24: Calibration Sheet for Residential and Commercial	
Figure 25: Industry – Steel End-use Services	37
Figure 26: Iron & Steel – Technologies for Process Heat Production	39
Figure 27: Iron & Steel – Technologies for Facilities/Other End-uses	
Figure 28: Iron & Steel – UCs to Guide Future Fuel Shares	41
Figure 29: Industry – End-use Service Alignment between US9r and Country	41
Figure 30: Refinery Template	42
Figure 31: Refinery PCG	43
Figure 32: Residential End-Uses & Heating Technology Types	43
Figure 33: Residential Heating Technologies	44
Figure 34: Residential New Technology Loadsheet	45
Figure 35: Transportation Modes & Technology Classes	46
Figure 36: New Light Duty Vehicles Loadsheet	47
Figure 37: EB Sheet for Transportation	48
Figure 38: Calibration Sheet for Transportation	48
Figure 39: Calibration VBE UpdateXLS Dump Tables	50
Figure 40: Calibration Results EB Table	50
Figure 41: Calibration EB Comparison Table	51
Figure 42: Calibration PP Comparison Table	51
Figure 43: Scenario/Templates Alignment	56
Figure 44: ANSWER Template Import	58
Figure 45: ANSWER Run Submission	59

Figure 46: Load Calibration Worksheet	
Figure 47: Demand Template Dependencies	. 61
Figure 48: BY Calibration Demand Levels	. 62
Figure 49: Demand Drivers	. 62
Figure 50: Residential Demand Forecast	. 63
Figure 51: BOUNDLO Scenario Template	
Figure 52: ANSWER Named Filter Specification Form	. 68
Figure 53: ANSWER Resolve User Constraint Display	. 68
Figure 54: Residential Market Share Constraints	. 69
Figure 55: Market Share Constraint Marginals	. 70
Figure 56: UC-COM Template	. 70
Figure 57: Device Quality Constraints in the UC-COM Template	.71
Figure 58: System cost example with and without relaxed guidance mechanisms	. 72
Figure 59: Policy Run Objective Function Values	. 74
Figure 60: Renewable Electricity Portfolio Requirement Specification Table	. 75
Figure 61: Renewable Resource Potential Adjustment Table	. 76
Figure 62: CO_2 Emission Reduction Adjustment Table	. 76
Figure 63: FEC Reduction Scenario Adjustment Table	. 77
Figure 64: Scenario Parameter Specification in ANSWER	. 78
Figure 65: TIMES-Starter VBE Commodity Sets	. 79
Figure 66: TIMES-Starter VBE Process Sets (Partial List)	. 80
Figure 67: VBE Process Set Specification	. 81
Figure 68: TIMES-Starter List of Tables	. 82
Figure 69: VBE Table Specification for Electricity Generation by Fuel Type	
Figure 70: VBE Data Cube View	. 84
Figure 71: Screenshot of AnalyticsXLS Scenarios tab	. 87
Figure 72: Screenshot of AnalyticsXLS Graphing Sheet - 1	. 88
Figure 73: Screenshot of AnalyticsXLS Graphing Sheet - 2	. 88
Figure 74: Cumulative Metrics Tables to 2030	. 89

List of Tables

Table 1: Structure of ANSWER-TIMES Smart Workbooks	4
Table 2: ANSWER Templates Dependency Table	9
Table 3: Commodity Naming Conventions	10
Table 4: Data Sheets in Electricity Generation Technologies Workbook	23
Table 5: Electricity Generating Plant Type and Qualifiers	24
Table 6: New Power Plant Technologies	25
Table 7: Mapping of Starter and EPA Industry Subsectors	35
Table 8: Industry Subsector Options	36
Table 9: Starter Industry Subsector Options	42

Table 10: List of AnalyticsXLS Tables for TIME	S-Starter
--	-----------

1 Introduction

This report describes the accompanying TIMES¹ Starter model (TIMES-Starter). The underlying premise of the TIMES-Starter model is to provide new users with a well thought out TIMES model structure employing best practices that is built from solid documented data sources. It provides all the basic building blocks, tools and techniques that need to be employed as part of assembling and applying a TIMES model.

The model data is assembled in flexible Excel workbooks (templates) that collectively comprise a viable starting point for development of a TIMES model - both with respect to designing a Reference Energy System (RES) and the depiction of the commodities and technologies underlying that RES. The templates are designed to be driven by the energy balance for any particular area of study (national, regional, municipal), and they are customizable to facilitate more rapid assembly of an initial model by new TIMES users. The intent is to provide a framework and roadmap that enables new users to assemble a high-quality initial model that is tailored as needed to reflect local conditions in a much more expeditious and organized manner.

The TIMES-Starter database is largely derived from the US Environmental Protection Agency Office of Research and Development (EPA-ORD) Nine-Region US MARKAL model (US9r) database², which is a peer-reviewed compilation of data from EPA, US Department of Energy (DOE) Annual Energy Outlook (AEO)³. Where the EPA database did not provide technologies seen as important (e.g., district heat (HPL) and Coupled Heat & Power (CHP) plants) other credible data sources were turned to, most notably the Danish Energy Agency's⁴. In a few cases, separately referenced, the technology characteristics in the database were updated or expanded, to plug holes or utilize better data. Modeling practices and parameters have been adjusted as needed to move the model data from the MARKAL to the TIMES framework, but the original EPA datasheets are provided to enable (easy) updating when new releases of US9r are made general available. [Full details with respect to the original USDOE AEO source data can be found in the US9r documentation (footnote 2) or by obtaining the full set of templates embodying the model.]

¹ The Integrated MARKAL/EFOM System, see <u>www.iea-etsap.org</u>.

² EPA U.S. Nine-region MARKAL Database, EPA 600/B-13/203, September 2013,

http://nepis.epa.gov/Exe/ZyNET.exe/P100I4RX.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015 &Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=& QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data %5C11thru15%5CTxt%5C0000009%5CP100I4RX.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h %7C-

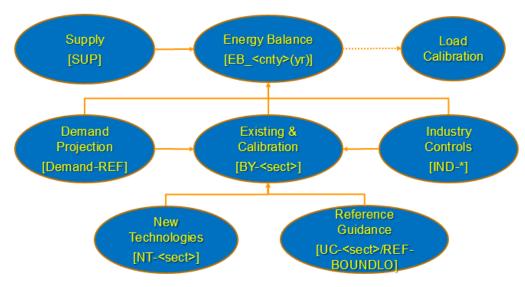
[&]amp;MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p%7Cf&DefSe ekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&S eekPage=x&ZyPURL. For access to the US9r templates and database contact Carol Lenox - Lenox.Carol@epa.gov.

³ Most of the data support the publication by the US Energy Information Administration of the Annual Energy Outlook, <u>http://www.eia.gov/forecasts/aeo/index.cfm</u>).

⁴ Link to the main English index for the supply technologies - <u>http://www.ens.dk/en/info/facts-figures/scenarios-analyses-models/technology-data</u>, heating device are only in Dutch at <u>Heat Generation</u> and <u>Datablad for individuelle varmeanlæg og energitransport 2013</u>.

This report serves as a "guidebook" explaining the basic organization, components and functionality of this Starter model, and provides guidelines of how to go about transforming the Starter model into a beginning model for a new application of TIMES. Therefore, the report describes:

- the basics of the approach taken;
- the underlying RES and naming conventions employed;
- each of the TIMES-Starter components;
- additional templates needed to complete the Starter model;
- using the TIMES-Starter model under ANSWER/VEDA/AnalyticsXLS, and
- how to go about adapting the Starter model.


In addition, some examples of common policy questions that the model might be used to explore (e.g., CO₂ emission limits or price, renewable and energy efficiency targets) are provided to complete the initial picture of what building and applying a TIMES model entails.

2 Organization of the Model Templates

2.1 Model Folder Orientation

The complete TIMES-Starter model is assembled in a single sub-folder sitting under the folder AnswerTIMESv6\Databases and named TIMES-Starter(vXX), where XX corresponds to a version number to make it easier to keep track of particular instances of the Starter (or later your own) model, currently v1.0. In this folder are a host of Excel ANSWER "Smart" workbooks that have been organized along the lines depicted in Figure 1, for the Reference or Business-as-Usual (BAU) scenario.

Note that these templates are linked, so that data contained in one workbook can be consistently shared across other dependent templates. The schematic in Figure 1 also shows the inter-dependency between the workbooks, that is where a child links to its parent. When a parent is updated all the dependent children MUST be updated as well (though it may be the case that the actual change does not affect a particular dependent workbook. These relationships are kept in the Dependency Table workbook which can be checked by ANSWER to ensure consistency (of dates), as noted in Section 7.3.

Figure 1: Schematic of Starter Templates Dependencies

* All workbooks to be loaded into ANSWER start with ATx_<country>*, with x="" for ver1 and "2" for ver2 ANSWER "Smart" XLS format

These workbooks fall into the following categories:

- EB Energy Balance for the 1st year of the model and current load curve;
- SUP Resource supply and imports;
- BY Base year existing technologies and calibration procedure;
- NT New technology options;
- Demand Demand drivers and projections;
- IND Industry configuration, and
- UC Reference guidance user controls.

Where sector (<sect>) is noted in Figure 1 these correspond to:

- Electric generation technologies [PP];
- Agriculture demand devices [AGR];
- Commercial demand devices and conservation measures [COM];
- Industrial structure and processes, including refineries [IND] {pending};
- Residential demand devices and conservation measures [RSD], and
- Transportation vehicle by mode [TRN].

In addition there are additional workbooks to assist with calibration of the electricity load duration curve (LoadCalibration) and check how the base year results compare to the energy balance (CalibrationCheck_REF) discussed in Section 6. There are also scenario templates (S_<scenario) for setting up alternate scenarios, and the Analytics graph comparison workbook for comparing run results (TIMES-Starter_AXLS) discussed in Section 13.

The naming conventions employed for the templates are explained a bit later in this section.

2.2 Template Components

The model data is assembled in ANSWER-TIMES "Smart" Excel workbooks⁵ consisting of several worksheets as generally described in Table 1. The list in table does not cover all the sheets in all the workbooks, rather covers mainly the EB, BY and NT core technology templates. The sheets of the more specialized templates, including Supply, Demand, and Reference guidance (UCs and INDs) may have some other special sheets only relevant to them, and will be covered in their respective sections.

The Supply, UC, IND, and some scenario files use Version-1 (v1) of the Smart workbooks, while the majority of the templates use the newer Version 2 (v2), the latter being very similar in layout and functionality to their MARKAL US9r counterparts.

Worksheet	Description
	ANSWER-TIMES template sheet that is used to add new ANSWER-TIMES smart
ANSv1-692-Home,	sheet to the current workbook, or turn an existing XLS/XLSM into a "smart"
ANSv2-692-Home	workbook. [Note that the v1 workbooks all begin with AT_ and the v2 workbooks
	with AT2]
	Mapping of EPA-US9r/other names to TIMES TIMES-Starter names and removal of
SETUP	unwanted items, emission factors, and USD price conversion factors. The Setup
	sheet links to the EB workbook for the list of commodities and emission rates.
EB	Information for the Energy Balance workbook for the sector. [BYs only]
Degions	Description of Regions for the Database where this instance of the New Techs will
Regions	be used. [Only active on Supply template.]
Colibration	The calculation sheet where the energy balance is apportioned and the initial year
Calibration	technology stock established for each sector. [BYs only]
	Energy carriers, emissions, materials are defined by their name, description, units
	and set memberships to be used in the rest of the sheets. In V1 templates
Commodities ⁶	commodity groups may also be declared. These are in turn controlled by the
	SETUP sheet, in most cases. [Some v1 templates have an ITEMS sheet that
	contains both commodity and process declarations.]
	Process technologies are defined by their name, description, units and set
Dragossos	memberships to be used in the rest of the sheets. These are in turn controlled by
Processes	the SETUP sheet, in most cases. [Some V1 templates have an ITEMS sheet that
	contains both commodity and process declarations.]
	A sheet with the data for commodities in the sector (mostly used for mapping
CommData	sector emissions to overall emissions and providing demand levels and load
	timings.
ProcData_ <sect> or</sect>	One or more sheets with the data for all technologies in the sector. [Note that the
<nature-of-the-< td=""><td>V1 templates have separate TID & TS sheets.]</td></nature-of-the-<>	V1 templates have separate TID & TS sheets.]
data> ⁷	

Table 1: Structure of ANSWER-TIMES Smart Workbooks

⁵ See ANSWERv6-TIMES Smart Excel Workbook Manual for details on working with / operating the templates.

⁶ For v1 templates the Commodities, Process and UC declarations are provided on the ITEMS sheet.

Worksheet	Description
EPA/DEA/PIEM/EC	Declaration and data sheets from the EPA-US9r/Danish Energy Agency/ Pak-
currently	IEM/Energy Community-EE databases (and perhaps other sources including but
(IEA/ETSAP/other_	not limited to IEA, ETSAP eTech-DS, etc.) providing the source values for the
<sheet>)</sheet>	technology options.

All of the Starter workbooks employ the ANSWER-TIMES "Smart" functionality, and have an ANSv1-692or ANSv2-692-Home sheet, and most have an EB and SETUP sheet to enable easy inclusion/exclusion of commodities (based initially on the EB) and technologies (according to the active commodities and defined process components). Explicitly excluding a commodity or technology/process is handled by putting a "*" in Col-A. The Commodity/Process declaration and Comm/ProcData data sheets then carry along the "*" to have them ignored by ANSWER during the import process. If a commodity that does not appear in the current energy balance is needed in the future (for a new technology option), then it needs to be "activated" on the BY EB sheet by deleting the 0 carried from the EB.

The TIMES-Starter has a wide range of commodities and process for almost every situation. However, as every country has some unique features, the addition of a new commodity or process may be required. See Section 14.2.2 for a discussion of the process for adding new commodities or processes.

The ANSWER BASE scenario is manually loaded with the Global parameters related to discounting (year and global rate), and annual timeslices. With regard to the latter, the model is setup for four (4) seasons and three (3) divisions of the day for a total of twelve (12) timeslices. These timeslices are established in the LoadCurve workbook, but also found in the EB workbook where each BY and the Demand Projection workbooks link to them. The values in the TimePeriods & FRs tab of the EB_Starter(2013) template are laid out so that they can be directly copied and pasted into ANSWER if they need to be changed. Section 6 discusses how to adjust the LoadCurve workbook. Note that adjusting the number of timeslices or the inter-relationships between timeslices is certainly doable, but this would need to be done with care as there are lots of interdependencies and recalibration will be necessary along with modifying the LoadCurve calculation workbook. *Therefore, changing the number of timeslice is beyond the scope of the initial Starter model and will instead be discussed at a later time in a planned Intermediate Guide for the TIMES-Starter model.*

2.3 Connecting with the EPA US9r Data

The technology characterization data comprising the ANSWER-TIMES (ProcData) load sheets links directly to a copy of the equivalent US9r ANSWER-MARKAL (or other) load sheets, unless otherwise stated. The Excel VLOOKUP function is used to grab the data by mapping the EPA process name to the corresponding Starter process names as assembled on the SETUP sheet. This is accomplished by means of the entry in Col-H of the ProcData sheets, which in turn is grabbed from Col-D on SETUP based upon the Starter process name in Col-B of the same row.

⁷ For the v1 templates data is loaded from the TS&TID Data sheet for standard processes and UCs, and from separate TOP/TID/TS_Data sheets for Supply. [Nature-of-the-data refers to power plant or vehicle type when there are numerous types for a sector.]

There is a rather extensive set of technologies in the full US9r database (workbook), including multiple wind classes with different price points, old and future power plants of various types, retrofit and new FGD options, and much more. The user is encouraged to obtain the full US9r documentation (see Footnote #2).

On each ProcData sheet above the TIMES Parameter (in row 4), the corresponding MARKAL parameter name is provided for reference. This also then establishes the column on the source data sheet where the information is to come from. The VLOOKUP function then references that column in the EPA data sheet and the look-up range is set to cover the entire data set, which ensures capturing the correct value. Also, note that the model periods come from the Setup sheet, which is linked to the EB sheet and thus the user should carefully ensure that the correct column is grabbed from the US9r data there. This is done as part of the VLOOKUP by means of the displacement count parameter, which is thus sensitive to any changes in the column order on the EPA source data sheet.

In addition, there are some transformations performed on the source data when and where needed. The most notable is for all costs, where the SETUP monetary conversion factor is set to bring all costs to 2013 US dollars. Others include converting from miles to kilometers for transport, and in the case of power plants inverting the input value (MARKAL) to efficiency (TIMES). We can see this in Figure 2 showing the MARKAL/TIMES templates (top/bottom) where Start=NCAP_START, LIFE=NCAP_LIFE, etc. as reflected in rows 3-4 of the latter, then for the most part the columns run across the worksheet in the same order, with some columns skipped over (hidden below).

A	B		С				D	E	F	G	H	1	J	К	L	M	N	0	P	Q
xTechData	GLOBAL,R0,F	R1,R2,R3,R4,R5,	R6,R7,R8,R9								_									
Index	1		2				3	4	5	8	7	8	3	10		12	13	H	15	16
						F	efresh													
Check Sht	TechName, Tec	hDesc, TACT, TC	AP Units				Units	CommIN	Comm OUT											
Parameter										START	LIFE	CAPUNIT	OUT(ELC) TID	PEAK(CON)	AF	FIXOM	VAROM	INP(ENT)c	INP(ENT)c	INP(ENT)
Qualifier																				
	TechName	TechDesc				U	nits	CommIN (CommOU	TID	TID 1	TID	TID					2005-2015	202	2025-205
R1 R2 R3 R4 R	R5. ECSTMRBONR	Residual Cor	al Steam; Bituminous; Over 10	0 MW ⁻ 201	0:Recircula	ated P	J. GW	CSTMBIT50	1.C	2010	45	31.536		0.95	0.9	27.3	1.0			
	R5. ECSTMRSONR		al Steam: Subbituminous: Ove						LC	2010	45	31.536		0.95	0.9	27.3	10			
	5. ECSTMRLONR		al Steam; Lignite; Over 100 M						LC	2010	45	31.536		0.95	0.9	27.3	1.0	9 2.5		
R1.R2.R3.R4.R			oal Steam - from 2015	11, 2010, 10	concontains				LC	2015	50	31.536			0.9					
R1.R2.R3.R4.R			- Combined-Cycle (Turbine)						LC	2005	30	31.536		0.95	0.9	11.54	0.8	8 2.2		
R1,R2,R3,R4,R	R5, ENGACC15	Natural Gas	- Combined-Cycle (Turbine)			P	J, GW	ELCNGACC E	LC	2015	30	31.536	1	0.95	0.9	11.54	0.8	8 2.07	7 2.0	2
R1,R2,R3,R4,R	R5, ENGACC	Natural Gas	- Combined-Cycle (Turbine)			P	J, GW	ELCNGACC E	LC	2020	30	31.536	1	0.95	0.9	11.54	0.8	8 2.0	7 2.0	1.
R1,R2,R3,R4,R	R5, ENGAACC		- Advanced Combined-Cycle	(Turbine)		P	J, GW	ELCNGACC E	LC	2020	30	31.536	1	0.95	0.9					
R1,R2,R3,R4,R	R5, ENGACT10		- Combustion Turbine			P	J, GW		LC	2005	30	31.536	1		0.9					
R1,R2,R3,R4,R			- Combustion Turbine						LC	2015	30	31.536	1	0.95	0.9					
R1,R2,R3,R4,R	R5, ENGACT	Natural Gas	 Combustion Turbine 			P	J, GW		LC	2020	30	31.536	1		0.9					
R1,R2,R3,R4,R			 Advanced Combustion Turt 	ine					LC	2020	30	31.536	1	0.95	0.9					
R1,R2,R3,R4,R			oal Gasif. Combined Cycle						LC	2015	40	31.536		0.95	0.9					
R1,R2,R3,R4,R			grated Gasification Combined						LC	2010	35	31.536	1		0.9					
R8,R9	EGEOBCFS		 Binary Cycle and Flashed S 						LC	2010	30	31.536	1	0.9	0.9					
R8,R9	EGEOEGS		 Enhanced Geothermal System 	em					LC	2025	30	31.536	1	0.9	0.9				5 2.8	5 2
R1,R2,R3,R4,R	R5, EURNALWR15	Nuclear LWF	Rs in 2015			P	J, GW		ELC JSPTA	2015	45	31.536	1	0.95	0.9	81.7	0.5	2		
A	θ		C	D			G													
r - warreld	STARTER				E	F	.0	H	1	3	К	L	M	N S	O F	P Q	R	S	T	U
		cOesc Units	1		Committe	CommOUT	0	H	1	3	К	L	M	N	D F	P Q	R	S	T	U
Check Sheet	STARTER ProcName, Pro	cDesc, Units	1		Committe	CommOUT	G		START	J	K	PEAK(CO	M	N	D FXOM				EOND(UP)	U BOND(UP)
Check Sheet Parameter		cDesc, Units	[] [] Process Acti	wity is:	Commits	CommOUT	0	H					M N) CN NCAP_AFA- N	AF	FIXOM	VARON	I NP(EN	ne RESID	BOND(UP)	
Check Sheet		cDesc, Units	Output-based,	vity is: leave blank.	Commits	CommOUT								AF	FNOM رفعانان فل	VARON	I NP(EN	The RESID	ST NCAP_BND	
Check Sheet Parameter		icDesc, Units		vity is: leave blank.	Commits	CommOUT						CNCAP_PK		AF CAP_AFA: NCAS	FNOM رفعانان فل	VARON	I NP(EN	Пс RESID 19 NCAP_PA 19 20	ST NCAP_BND	
Check Sheet Parameter Qualifier1 Qualifier2	ProcName, Pro		Output-based,	vity is: leave blank. isert 1.]		Activit	•	NCAP_ST		PRC_CAR	CNCAP_PK	CN NCAP_AFA. N	A# CAP_AFA: NCAS AMIR	FIXON LAF-UINCAR	VARON	I NP(EN DST ACT_E ACTOR	По RESID 19 NCAР_РА Р 20 L	ST NCAP_BNO	INCAP_BNC
Check Sheet Parameter Qualifier1 Qualifier2	Procilame, Pro	cDesc, Units ProcDesc	Output-based,	vity is: leave blank. isert 1.]	CommOUT						CNCAP_PK		A# CAP_AFA: NCAS AMIR	FNOM رفعانان فل	VARON	I NP(EN DST ACT_E ACTOR	Пс RESID 19 NCAP_PA 19 20	ST NCAP_BND	INCAP_BNC
Check Sheet Parameter Qualifier1 Qualifier2 ' Standard Pow	Prociliame, Pro	ProcDesc	Output-based, a	vity is: leave blank. sert I. ProcUnite) , CommiN	CommDUT	Activit	Tech Lookup	NCAP_ST	NRINCAP_TUP	PRC_CAP	ACNCAP_PK ANNUAL	2013	A# CAP_AFA: NCAS AMIR	FNON LAF-UINCAP, IAL 115	VARON LFOM ACT_C	I NP(EN OST ACT_E ACTOR ANNUA)c RESD 19 NCAP_PA P 20 L TE	ST NCAP_BNO	INCAP_BN
Check Sheet Parameter Qualifier1 Qualifier2 ' Standard Pow	Procilame, Pro	ProcDesc	Output-based,	vity is: leave blank. sert I. ProcUnite]	CommDUT	Activit	•	NCAP_ST		PRC_CAP	ACNCAP_PK ANNUAL	CN NCAP_AFA. N	AF CAP_AFA: NCAS ASSIR	FNON LAF-UINCAP, IAL 115	VARON	I NP(EN OST ACT_E ACTOR ANNUA	По RESID 19 NCAР_РА Р 20 L	ST NCAP_BNO	INCAP_BN
Check Sheet Parameter Gualifier1 Qualifier2 Standard Pow	Prociliame, Pro	ProcDesc Bituminous (Brow	Output-based, a	Vity Is: leave blank. sert I. ProcUnits PJ.GW) , CommiN	CommDUT	Activit	Tech Lookup	NCAP_ST	NRINCAP_TUP	TE 31.50	ACNCAP_PK ANNUAL	2013	AF CAP_AFA: NCAS ASSIR	FXX0M (AF-UINCAP) (AL) (15) (0.90	VARON _FOM ACT_CC 31.70	I NP(EN OST ACT_E ACTOR ANNUA)c RESD 19 NCAP_PA P 20 L TE	ST NCAP_BND 13 06	INCAP_BN
Check Sheet Parameter Qualifier1 Qualifier2 * Standard Pow	Procliame, Pro Procliame wer Plants EECOA00C-ST-X0 EECOA00C-ST-X0	ProcDesc Bituminous (Brow Sub-Bituminous C	Output-based, a Input-based, a in Coal) - Steam turbine (Existing) Soli - Steam turbine (Existing)	Vity is: Jeave blank. Isert I. ProcUnita PJ, GW PJ, GW	CommIN PWRCOADI PWRCOADE	CommDUT ELC ELC	Activit UD T	Tech Lookup ECSTWRBONR ECSTWRBONR	NCAP_ST/ TD 2013 2013	ISNCAP_TUP	TE 31.5	ADVIDUAL ADVIDUAL NG D	2013 95 0.79	AF CAP_AFA_NCAP AMR 8 21	FIXOM (AF-UINCAP) (AL 015 0.90 0.90	VARON _FOM ACT_C 31.76 31.76	I NP(EN OST ACT_E ACTOS AURUA 1.26)c RESO P NCAP_PA P 20 L TE 0.33 0. 0.33 0.	ST NCAP_BND 13 06	INCAP_BN
Check Sheet Parameter Gualifier1 Gualifier2 ' Standard Pow	Procliame, Pro Procliame ver Plants EECOA00C-ST-X0	ProcDesc Bituminous (Brow Sub-Bituminous C	Dulput based, i Input based, i in Coal) - Steam turbine (Existing)	Vity is: Jeave blank. Isert I. ProcUnita PJ, GW PJ, GW	CommIN	CommDUT ELC ELC	Activit UD T	Tech Lookup	NCAP_ST	NRINCAP_TUP	TE 31.5	ADVIDUAL ADVIDUAL NG D	2013 95 0.79	AF CAP_AFA_NCAP AMR 8 21	FIXOM (AF-UINCAP) (AL 015 0.90 0.90	VARON _FOM ACT_C 31.76 31.76	I NP(ZN OST ACT_B ACTOR ANNUA)c RESD F NCAP_PA P 20 L TB 0.33 0.1	ST NCAP_BND 13 06	INCAP_BN
Check Sheet Parameter Qualifier1 Qualifier2 ' Standard Pow	Procliame, Pro Procliame wer Plants EECOA00C-ST-X0 EECOA00C-ST-X0	ProcDesc Bituminous (Brow Sub-Bituminous C Natural Gas - Co	Output-based, a Input-based, a in Coal) - Steam turbine (Existing) Soli - Steam turbine (Existing)	vity is: leave blank. sert I. ProcUnits PJ.GW PJ.GW PJ.GW	CommIN PWRCOADI PWRCOADE	CommDUT ELC ELC	Activit VD T	Tech Lookup ECSTWRBONR ECSTWRBONR	NCAP_ST/ TD 2013 2013	ISNCAP_TUP	TE 31.52	ADDRAF PR ANNUAL M6 0 16 0	2013 95 0.79	AF CAP_AFA_NCAP AMR 8 21	FIXOM (AF-UINCAP) (AL 015 0.90 0.90	VARON _FOM ACT_CI 31 70 31 70 13 39	I NP(EN OST ACT_E ACTOS AURUA 1.26)c RESO P NCAP_PA P 20 L TE 0.33 0. 0.33 0.	ST NCAP_BND 13 06 1 13	INCAP_BN
Check Sheet Paramoter Qualifier1 Qualifier2 * Standard Pow	Proclame Proclame wer Plants EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0	ProcDesc Bitumicouk (Brou Sub-Bitumicouk (Brou Sub-Bitumicouk C Natural Gas - Cor Natural Gas - Cor	Dubut based, input based, in Coati - Steam turbine (Dotsting) Coati - Steam turbine (Existing) mbined cycle (Existing) mbustion turbine (Existing)	vity is: leave blank. sert L. Proclimits PJ,GW PJ,GW PJ,GW PJ,GW	Commill PWRCOADE PWRCASH4 PWRGASH4	CommOUT ELC ELC ELC	Activit NO T	Tech Lookup ECSTWRIONR ENGACCIO ENGACCIO	NCAP_ST/ TE 2013 2013 2013 2013	иянска _р тия 1 1 1	PRC_CAP	ACNCAP_PR ANNUAL NG D NG D NG D NG 0	2015 2015 95 0.79 95 0.86 95 0.71	AF CAP_AFA_NCAS ASPR 8 21 1 1 1	FDXOM AF-UINCAP IAL 0.90 0.90 0.90 0.90	/ VARON FOM ACT_C 31 70 31 70 13.39 7.46	NP(2N) ACT_E ACT_E ACT_E ACTGR ANNUA 1.26 1.02 4.35	Пс RESD P NCAP_PA P 20 L TB 0.33 0: 0.45 0. 0.26 0.	ST NCAP_BND 13 06 1 08 1 11 1 15	INCAP_BN
Check Sheet Paramoter Qualifier1 Qualifier2 * Standard Pow	Proclame Proclame Proclame EECOASBC-ST-X0 EECOASBC-ST-X0 EECOASBC-ST-X0	ProcDesc Bitumicouk (Brou Sub-Bitumicouk (Brou Sub-Bitumicouk C Natural Gas - Cor Natural Gas - Cor	Dubut based, input based, i in Coal) - Steam turbine (Existing) Jolei - Steam turbine (Existing) mbined cycle (Existing)	vity is: leave blank. sert L. Proclimits PJ,GW PJ,GW PJ,GW PJ,GW	CommiN PWRCOADE PWRCOASE PWRGASNA	CommOUT ELC ELC ELC	Activit NO T	Tech Lookup ECSTURIONR ENGACCIÓ	NCAP_ST/ TE 2013 2013 2013	URINCAP_TUP 1 1 1	PRC_CAP	ACNCAP_PR ANNUAL NG D NG D NG D NG 0	2013 2013 95 0.79 95 0.88	AF CAP_AFA_NCAP AMR 8 21	FDXOM AF-UINCAP IAL 0.90 0.90 0.90 0.90	/ VARON FOM ACT_C 31 70 31 70 13.39 7.46	I NP(ZN DST ACT_E ACTOS ANNUA 1.26 1.02	Гс RESD IF NCAP_PA P 20 L TE 0.33 0: 0.45 0.	ST NCAP_BND 13 06 1 08 1 11 1 15	INCAP_BNC
Check Sheet Parameter Qualifier1 Qualifier2 * Standard Pow	Proclame Proclame wer Plants EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0	ProcDesc Bitaminous (Brow Sub-Bitaminous C Natural Gas - Co Natural Gas - Co Lighte - Integrate	Output based, a prour based, a un Coal) - Steam turbule (Existing) coal - Steam turbule (Existing) mbinato turbule (Existing) mbinato turbule (Existing) d Gasif. (Existing) Combined cycle	vity is: loave blank, seert I. Procellmita PJ,Gw PJ,Gw PJ,Gw PJ,GW PJ,GW	Commill PWRCOADE PWRCASH4 PWRGASH4	CommOUT FLC FLC FLC FLC	Activit PD T	Tech Lookup ECSTWRIONR ENGACCIO ENGACCIO	NCAP_ST/ TE 2013 2013 2013 2013	иянска _р тия 1 1 1	PRC_CAP/ TED 31.53 31.53 31.53 31.53	AC NCAR_FX ANNUAL 56 0 56 0 56 0 56 0	2015 2015 95 0.79 95 0.86 95 0.71	AF CAP_AFA_NCAS ASPR 8 21 1 1 1	FIXON 2,47-UINCAP 144, 0.50 0.50 0.50 0.50 0.50	4 VARON FOM ACT_C 31.70 31.70 13.39 7.46 52.24	NP(2N) ACT_E ACT_E ACT_E ACTGR ANNUA 1.26 1.02 4.35	Ге RESD 9 NCAP_PA 20 4 ТВ 0.33 0.33 0.33 0.45 0.28 0.24 0.34 0.34	ST NCAP_BND 13 06 1 08 1 11 1 15	INCAP_BND
Check Sheet Parameter Qualifier1 Qualifier2 * Standard Pow	Proclame Proclame NET Plants EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0 EECOADBC-ST-X0	ProcDesc Bitaminous (Brow Sub-Bitaminous C Natural Gas - Co Natural Gas - Co Lighte - Integrate	Output-based, prout-based, prout-based, prout-based, prout-based, pro-training and sector further (Existing) moned cycle (Existing) d Gaset, (Existing) combined cycle existing)	vity is: loave blank, isert L ProcUnits PJ,GW PJ,GW PJ,GW PJ,GW PJ,GW PJ,GW	Commili PWRCOADE PWRCOADE PWRCAADE PWRCOADE	CommOUT BLC BLC BLC BLC BLC BLC	Activit VO r r r	Tech Lookup ECSTURBIONR ENGACCIO ENGACCIO ECOALIGOC	NCAP_ST/ TE 2013 2013 2013 2013 2013	18 NCAP_TLF 1 1 1 1 2	PRC_CAPJ TED 31.52 31.52 31.52 31.52 31.52 31.52	AC NCAR_FX ANNUAL 86 D 86 D 86 D 86 D 86 D 86 D 86 D	2015 2013 95 0.79 95 0.86 95 0.71 95 0.63	AF CAP_AFA NCA4 ANN 0 20 1 1 1 1 1	FIXON 2,45-011CAP 1015 0.50 0.50 0.50 0.50 0.50 0.50 0.50	4 VARON FOM ACT_C 31.70 13.30 7.46 52.24 94.82	1 NP(ZN) DST ACT_E ACTOR ANNUA 1.26 1.26 1.02 4.36 2.04	Гс RESO 9 NCAP_PA 20 4 TE 0.33 0.1 0.33 0.1 0.45 0. 0.28 0. 0.28 0. 0.24 0.1	ST NCAP_BND 13 06 08 11 15 25	INCAP_BND

Figure 2: Aligning TIMES-Starter & MARKAL US9r Parameters/Data

Note that US9r source data sheets mix existing and new technologies. However, for TIMES-Starter the existing technologies and new technologies are maintained in separate templates, so the original US9r

source data sheet will appear in both workbooks, for each sector. But with respect to the existing processes modelers need to compare the characteristics of their existing set of technologies against those of the new standard new technologies to ensure that any impacts of local conditions are factored into the data. For example, the plant conversion efficiency might be adjusted lower due to higher ambient temperatures, or the investment cost increased because a dry-cooling water system is required.

The TIMES-Starter workbooks also detect changes in efficiency over time, and as necessary set the TIMES Vintage flag, so that said efficiencies are tied to the processes according to the year of investment rather than current model period.

In October 2016, the USEPA-ORD will release the first update to the US9r model following the creation of the TIMES-Starter model. In discussion with USEPA-ORD they have agreed to provide a clear summary of every STRUCTURAL change to their templates, particularly with respect to the column order. Knowing this, what is envisioned for updating the TIMES-Starter is that the updated US9r MARKAL data load sheets will be able to be copied (using Copy/PasteValues) over the existing corresponding TIMES-Starter worksheet, updating all the numbers. The VLOOKUP functions will need to be modified for any column changes, and the VLOOKUP range expanded as needed to capture any new processes added to US9r data set. These new processes and any new commodities they require will need to be added to the SETUP/Commodity/Process/ProcData tabs as necessary. A discussion on adding new processes can be found in Section 14.

2.4 Template Naming Conventions

The templates employ a simple naming convention consisting of AT(2)_<country>_<nature>-<sector>, where all load templates start with AT (for ANSWER-TIMES) and

- (2) indicates those templates employing the newer version 2 (v2) smart templates, as opposed to AT_ for the original version 1 (v1) templates;
- <country> is currently STARTER, but should be replaced by the country or region name;
- <nature> indicates the type of template, e.g., BY=base year, NT=New Tech, etc., and
- <sector> indicates the specific energy or demand sector

Supply, IND, UC and some scenario files use the v1 format, but the majority of the templates are in the v2 format. The ANSWER-TIMESver2-692.xlsm file is an empty template that may be used to create new v2 templates (ANSWER-TIMESver1-692 for v1), but more likely changes will involve modifying an existing TIMES-Starter templates or copying them to make new ones. The list of current templates is shown in Table 2.

Note that some workbooks are linked to others and should be handled as a pair (that is opening both together) when making changes or renaming the parent (linked to) template. However, it is recommended that one does not change workbook template names, rather make new folders and make your changes there so that the inter-dependencies are consistent, and the ANSWER Import Scenario remembering the template(s) for each scenario remains intact. [Every once and a while when opening a

workbook it's a good idea to check "Data/Edit Links" to make sure the folder/files are pointing to the correct instance of the parent/grandparent.]

To help ensure that the workbooks are properly synchronized (that is all children have a last saved date newer than that of all their ancestors) ANSWER supports a Workbook Dependency Check facility at Import time. These dependencies are reflected in Figure 1 and Table 2. It is recommended that after importing changed (dependent) templates into ANSWER the user resave the DependencyXLS – so that when sorted by date it serves as a reminder of those changed since last import. Also, if the user therefore does choose to change of the name of a template they are strongly encouraged to also remember to change the Dependency table. There is a bi-directional dependency between the LoadCalibration and EB_Starter workbooks, though neither is actually loaded into ANSWER. As such only a change in the LoadCalibration is monitored. When updating many templates the easiest way to proceed in terms of meeting the dependency criterial is to make the changes in the order listed in the Child Templates column of the table below.

TIMES-Starter Template Dependencies							
Linked Child Templates	Parent/GrandParent Template						
EB_Starter(2013).xlsm	Starter_LoadCalibration.xls						
AT_Starter_SUP.xlsm	EB Starter(2013).xlsm						
AT2_Starter_BY-AGR.xlsm	EB Starter(2013).xlsm						
AT2_Starter_BY-COM.xlsm	EB_Starter(2013).xlsm						
AT2 Starter BY-IND.xlsm	EB Starter(2013).xlsm						
AT2 Starter BY-PP.xlsm	EB Starter(2013).xlsm						
AT2 Starter BY-RSD.xlsm	EB_Starter(2013).xlsm						
AT2 Starter BY-TRN.xlsm	EB_Starter(2013).xlsm						
AT2 Starter Demand-REF.xlsm							
	AT2_Starter_BY-AGR.xlsm						
	AT2 Starter BY-COM.xlsm						
	AT2 Starter BY-IND.xlsm						
	AT2 Starter BY-RSD.xlsm						
	AT2 Starter BY-TRN.xlsm						
AT2 Starter NT-AGR.xlsm	AT2 Starter BY-AGR.xlsm						
AT2 Starter NT-COM.xlsm	AT2 Starter BY-COM.xlsm						
AT2 Starter NT-PP.xlsm	AT2 Starter BY-PP.xlsm						
AT2 Starter NT-RSD.xlsm	AT2 Starter BY-RSD.xlsm						
AT2 Starter NT-TRN.xlsm	AT2_Starter_BY-TRN.xlsm						
AT Starter UC-COM.xlsm	AT2_Starter_BY-COM.xlsm						
AT_Starter_UC-COM-50.xlsm	AT2_Starter_BY-COM.xlsm						
AT_Starter_UC-COM-90.xlsm	AT2_Starter_BY-COM.xlsm						
AT_Starter_UC-RSD.xlsm	AT2_Starter_BY-RSD.xlsm						
AT_Starter_UC-RSD-50.xlsm	AT2_Starter_BY-RSD.xlsm						
AT_Starter_UC-RSD-90.xlsm	AT2_Starter_BY-RSD.xlsm						
AT_Starter_UC-TRN.xlsm	AT2_Starter_BY-TRN.xlsm						
AT_Starter_UC-TRN-50.xlsm	AT2_Starter_BY-TRN.xlsm						
AT_Starter_UC-TRN-90.xlsm	AT2_Starter_BY-TRN.xlsm						
REF_BOUNDLO.xlsm	AT2_Starter_BY-PP.xlsm						
REF_BOUNDLO-RED.xlsm	AT2_Starter_BY-PP.xlsm						
AT_Starter_ZZDMY.xlsm	AT_Starter_SUP.xlsm						
	AT2_Starter_Demand-REF.xlsm						
Global data needs to be manually copied into BASE if changed from EB template							

Table 2: ANSWER Templates Dependency Table

The templates are managed and loaded into the ANSWER-TIMES database as discussed in Section 7.

Note that if one encounters a problem with an ANSWER "Smart" XLS not functioning properly, saving the current templates as an XLSX (that is, workbook without macros) and then using the ANSWER-TIMES template "Master" to update this XLSX to an XLSM is a strategy that should overcome problematic XLSM functionality.

3 RES Component Naming Conventions and Units

Good practice for TIMES models is to employ strict naming conventions for both energy carrier and technology names encompassing the Reference Energy System (RES). Table 3 provides the three components of each energy carrier name. Each energy carriers has a core three-character identifiers

(e.g., OIL, COA, RNW). In the database, these core names are preceded by a three-character sector identifier that indicates which sector the energy carrier is being supplied from (SUP) or to (all others), and may include a qualifier identifying a subset of the core energy carrier group (e.g., hard coal, diesel oil, etc.) it is associated with. For example, supply of hard/brown coal to all sectors is SUPCOAHRD/BRO, while coal for electric generation is PWRCOAHRD/BRO, and COMELC is electricity supplied to the commercial sector. Where it is not necessary to qualify the "root" it can be omitted (e.g., electricity). Rigorously employing such naming conventions, and being strict to include unique key words the description (e.g., "existing" for all technologies in place today) is critical to ensuring the correct functioning of the current process and commodity sets in the Starter model that enable the power of VEDA_Back-End (VBE) and the ANSWER Named Filters to be fully exploited.

Energy Carrier Root	Description	Energy Carrier Qualifier ⁸	Description
BIO	Biomass	ANT	Anthracite
COA	Coal	PSF	Biomass (primary solid fuel)
GAS	Natural Gas	BIT	Bituminous
NUC	Nuclear	BRI	Briquettes
OIL	Oil and Oil Products	ССО	Coke
RNW	Renewables	COI	Crude
Other	Will be added as needed	DSL	Diesel
		FOI	Fuel Oil
Energy Sector	Description	GEO	Geothermal
AGR	To Agriculture sector	GSL	Gasoline
COM	To Commercial sector	HYD	Hydro
IND	To Industrial sector	JET	Jet Fuel
PWR	To Electric Generation	KER	Kerosene
RSD	To Residential sector	LFG	Landfill Gas
SUP	Supply & Imports/Exports	LIG	Lignite
TRN	To Transportation sector	LNG	Liquefied Natural Gas
		LPG	Liquefied Petroleum Gas
		MSW	Municipal Solid Waste
		NAT	Natural Gas
		PET	Peat
		RFO	Residual Fuel Oil
		SOL	Solar
		WAS	Waste
		WIN	Wind
		URN	Uranium
		Others	Will be added as needed

Table 3: Commodity Naming Conventions

⁸ Note that some Energy Carriers in the IEA energy balance are not listed in this table.

Similarly, naming conventions for technologies look to identify aspects of the sector or demand service (perhaps by type (e.g., rural/urban households, public/private buildings)), and nature of the technology (e.g., power plant or device type, fuel consumed, kind of demand device, and quality of the device). For example, the residential heating devices in Figure 3 have their names built as:

- Residential Sector: R •
- Service: н - Heating •
- Building Type: B •
- Households [could have >1 type]
- Fuel: GASNAT
- Natural Gas
- Device Type F/HA/R
- Furnace/Air Heat Pump/Radiant
- •
- Device Quality ST/IM/BE/AD Standard/Improved/Best/Advanced for conventional to most efficient

TIMES	Description	EPA
* Building Type		
* Space Heating		
* Electric Radiant		
RHBELC-R-ST	Residential Heating: Electricity Radiant-Standard	RSHERDV110
* Electric Heat Pump		
RHBELC-HA-ST	Residential Heating: Electricity Heat Pump-Standard	RSHEHPV110
RHBELC-HA-IM	Residential Heating: Electricity Heat Pump-Improved	RSHEHPV210
RHBELC-HA-BE	Residential Heating: Electricity Heat Pump-Best	RSHEHPV310
RHBELC-HA-AD	Residential Heating: Electricity Heat Pump-Advanced	RSHEHPV410
[®] Natural Gas Furnace		
RHBGASNAT-F-ST	Residential Heating: Natural Gas Furnace-Standard	RSHNFRV210
RHBGASNAT-F-IM	Residential Heating: Natural Gas Furnace-Improved	RSHNFRV310
RHBGASNAT-F-BE	Residential Heating: Natural Gas Furnace-Best	RSHNFRV410
RHBGASNAT-F-AD	Residential Heating: Natural Gas Furnace-Advanced	RSHNFRV510
[•] Natural Gas Radiant		
RHBGASNAT-R-ST	Residential Heating: Natural Gas Radiant-Standard	RSHNRDV110
RHBGASNAT-R-IM	Residential Heating: Natural Gas Radiant-Improved	RSHNRDV210
RHBGASNAT-R-BE	Residential Heating: Natural Gas Radiant-Best	RSHNRDV310
Kerosene Furnace		
RHBOILKER-F-ST	Residential Heating: Kerosene Furnace-Standard	RSHKFRV110
RHBOILKER-F-IM	Residential Heating: Kerosene Furnace-Improved	RSHKFRV210

Figure 3: Demand Device Naming Example - Residential Household Heating Devices

In the sector sections that follow the approach, components and some examples of each technology group are given.

In terms of units, in the US9r database all costs are expressed in 2005 US dollars, and the workbooks have all been designed with a conversion factor on the SETUP sheet (cell D4 as USD Convert) to allow conversion to other years and currencies. The current conversion factor is set to calculate cost parameters in 2013 US dollars, which corresponds to the first year of the model. However, the

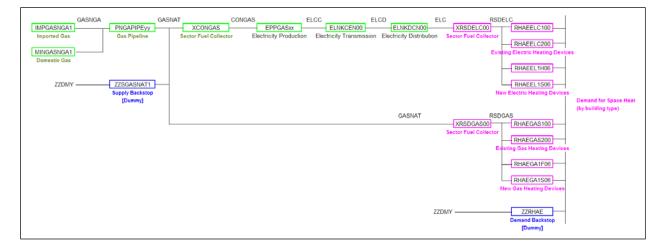
Agriculture data, not available from US9r, is in 2006 US\$ so the USD_Convert needs be adjusted by referring to the EB USD conversion table, as should below. Note that in the case of the DEA data a different approach was taken were work was done on the source data sheet to convert from Euros to Dollars, where it so happens the costs are in 2005Euros so not inflating/deflating is necessary.

US	D_co	onvert	• : 🗙 🗸 fx		_		/ · · · · ·			23-'C:
				\AnswerTIMESv6\Answer_Data	bases\TIMES	-Starter(v12f)\[E	B_Starter(2013).	klsm]SETUP	'!\$H\$16	
	А	В		С		D	E	F	G	Н
1			Dat	tabase Units				BY		
2		Units (activity a Processes tabs	nd capacity) for all commodities and pro s.	cesses are shown on the Commoditie	s and		Periods	2013	2015	2020
3			Curre	ency Conversion						
4			or the EPA dtatabase is 2005 US dollars, whatever year and currenty is desired.	The factor currently applied converts to		1.13				
4 5		donaro.		Gary: Pak-IEM is 2006 - so D4						
6		Country		reference adjusted accordingly!		STARTER				
7				accordingly:						
8	* Se	ector Designation	1							
9		AGR	Agriculture							

Figure 4: Setting USD_Convert for a Particular Sector (Agriculture)

In terms of the commodity and technology attribute units:

- Energy Petajoules (PJ);
- Capacity Gigawatts (GW) for power sector, Petajoules/annum (PJa) for most others, and kilometer index for transportation;
- Demand most are Petajoules, with some transportation in passenger/freight kilometers and lighting in lumens, and
- Emissions Million/Thousand Tons (Mt/Kt).


Note that some of the transportation demands are in terms of Billion Vehicle Miles (bvm) in US9r which are then converted to Billion Vehicle Kilometers (bvk) for the TIMES-Starter.

4 Organization of the TIMES-Starter RES

All TIMES models are organized around the principles of the Reference Energy System (RES) network. The RES connects processes (e.g., resource supply, power plants, refineries, pipelines, demand devices) that produce/consume commodities (energy, materials, emissions) by means of identifying the flow of the commodities from / into the processes. This network then manages the underlying energy system to ensure the flows balance and that each of the process is properly characterized in terms of where it "fits" in the energy system. The key to this simple approach is the requirement that the name of each commodity changes when exiting a process, where, as discussed in the next sections, employing strict naming conventions make it easy to identify each process and commodity within the RES.

Figure 5, while not from the Starter model, shows the basic approach to organizing the RES. Resources are imported/mined, in this case natural gas, then moved via a pipeline to either the power or demand sectors (here Residential), where a "dummy" sector exchange process (beginning with "X") converts the name of the upstream gas supply to that of the corresponding sector (retaining the word "GAS" in its

name to facilitate set definition and filtering later). When the gas is consumed to generate electricity that commodity stream kicks in and centralized electricity is sent along the transmission lines to the distribution network, where consumption is then tracked by demand sector (retaining "ELC" in the commodity name throughout).

Figure 5: Basic RES Organization Principles

Thus, as part of employing good RES design principles, processes are often inserted at convenient points in the network for the purposes of facilitating tracking, collecting, and distinguishing aspects of the underlying energy system. One such convention employed is the use of X<sector><fuel> processes (see XCONGAS in Figure 5) to channel commodities between upstream sources and the various sectors modeled, where the processes' main purpose is to change the name of the commodity to its sector counterpart. These may also serve as an appropriate place to track sector emissions (by fuel), apply sector delivery charges, reflect losses in the distribution system, and reflect limits/cost of expanding infrastructure.

Another good TIMES modeling practice that greatly aids in model debugging is to employ "backstop" processes that can produce the main commodities in the energy system by consuming a dummy commodity at an extremely high cost. These backstop processes (typically named ZZBCK<type>) are setup to produce all conventional energy carriers, electricity, and demand services that are currently used in the model to help avoid infeasibilities that may arise due to a production shortfall or RES connectivity problem --- the most common cause of infeasibilities (along with inconsistent bounds). A typical ZZBCKNRG process for energy is shown in Figure 6, where a ZZBCKELC (operating at the timeslice level) and ZZBCKDEM are also created to supply unmet electricity or service demand(s). If a ZZBCK process is called upon, it can be readily identified in the solution because the impact of its high cost will increase the objective function value dramatically.

<u>input(s)</u>	ZZBCKNRG : Backstop for Energy (not ELE)	<u>OUTPUT(S)</u>
ZZDMY	ZZBCKNRG : Backstop for Energy (not ELE)	SUPBIOGAS SUPBIOMSW SUPBIOPSF SUPCOAANT SUPCOAANT SUPCOAOBC SUPCOASBC SUPCOASBC SUPCOAOBC SUPCOASBC SUPCOA

Figure 6: Backstop Process to Avoid (Most) Infeasible Solutions

5 A Look at the Input Data Workbooks

This section describes by sector the nature of the various input data sheets found in the main templates that comprise the model. The type of sheets found in the workbooks were discussed in Section 2.2, while here the content with respect to the model data is the focus.

Here all the examples shown, with the exception of Supply, present the New Technology (NT) templates to get across the nature of the information needed, and where and how it is organized in the template. How to go about augmenting the information found in the templates, most notably adding/removing commodities and processes, and/or making entire new sub-sectors (e.g., splitting households into urban and rural) or new regions, is discussed in Section 14.

Before going through the templates a critical aspect of how TIMES handles input data with respect to interpolation / extrapolation is warranted in terms of what is most commonly used in the Starter model. The interpoliton rules are explained in the ETSAP TIMES documentation (<u>http://www.iea-etsap.org/web/Documentation.asp</u>). In the input templates whenever the Period=0 for any paramter the value provided corresponds to the override of the default interpolation rule. In the Starter (and most TIMES models) the I/E override is employed for:

Restricting investment in existing processes and devices via i/e=12 for NCAP_BND (setting it to
eps for all periods);

- Keeping shares in place over the modeling horizon with i/e=5 for FLO_SHARE/MARK (interpolate and extend constant), and
- Extending the RHS=0 for UCs via i/e=5 (interpolate and extend constant).

There may of course be other instances where the I/E default is overridden, but these are used the most common ones. The rest of the parameters are usually interpolated with extrapolation constant, as their default. The table from the TIMES documentation is shown below.

Action	Option code	Applies to
Default interpolation/extrapolation (see above)	0 (or none)	All
No interpolation/extrapolation	< 0	All
Interpolation but no extrapolation	1	All
Interpolation, but extrapolation with EPS	2	All
Full interpolation and extrapolation	3	All
Interpolation and backward extrapolation	4	All
Interpolation and forward extrapolation	5	All
Migrated interpolation/extrapolation within periods	10	Bounds, RHS
Interpolation migrated at end-points, no extrapolation	11	Bounds, RHS
Interpolation migrated at ends, extrapolation with EPS	12	Bounds, RHS
Interpolation migrated at end, backward extrapolation	14	Bounds, RHS
Interpolation migrated at start, forward extrapolation	15	Bounds, RHS
Log-linear interpolation beyond YEAR	YEAR (≥1000)	All

Table 2. Option Codes for the control of data interpolation

5.1 Energy Balance

The process of depicting the energy system for a TIMES model starts from the complete first year energy balance. For the TIMES-Starter a typical energy balance for 2013 is used. Thus the first step in adapting the TIMES-Starter for another energy system is to properly enter the associated energy balance. The layout of the TIMES-Starter Energy Balance worksheet corresponds to that published by the IEA. Because many of the other templates are driven by the Energy Balance, its layout, as seen in Figure 7, should be considered rigid and should not be changed. [If a fuel is missing for your energy system you can (carefully) take over one of the other fuels (columns) that you don't need, as long as you follow the naming conventions discussed earlier.]

Figure 7: Er	nergy Ba	lance Sh	ieet
--------------	----------	----------	------

Country (Region) Name																
	OILLPG	OILGSL	OILJET	OILKER	UILDSL	UILFUI	UILNAP	UILLUB	UILBU	OILPCO		GASNAT	BIUIWA	BIOMSW	BIOPSF	BIOGAS
PJ	LPG					Fuel Oil		Lubric ants		Petrole um Coke	Non- specifie d Oil Products	Natural Gas	Industri al ₩aste	Municipal Waste	Primary Solid Biofuels	
Main activity producer electricity plants		-					-					15.00		- 3.00	0 15.00	3.00
Autoproducer electricity plants		-				-						-				
Main activity producer CHP plants		-				-						-				
Autoproducer CHP plants		-				-						-				
Main activity producer heat plants		=				-				-		-				
Autoproducer heat plants		-	- ·			-						-				
Heatpumps		-				-						-				
Electric boilers		-				-		•		-		-				
Chemical heat for electricity production		-	- ·			-						-				
Gasworks		-				-						-				
Oil refineries		-	- ·			-		•								
Coal transformation		-	- ·			-						-				
Liquefaction plants		-				-				-		-				
Non-specified (transformation)		-				-			-			-	1.1.1			
Energy industry own use		-	- ·			-										
Losses		-				-			-			-			-	
Final consumption	0.75				17.48			-		-		02.01	-		20.11	
Industry	-									-			-			
Iron and steel		-	- ·			-						-				
Chemical and petrochemical		-				-						-				
Non-ferrous metals		-				-						-				
Non-metallic minerals		-	- ·			-			-			-				
Transport equipment		-				-				-		-	1.1.1			
Machinery		-				-				-		-	1.1			
Mining and quarrying		-	- ·			-		•				-				
Food and tobacco		-				-			-	-		-				
Paper, pulp and print		-	-									-	1		-	
Wood and wood products		-	- ·			-						-	1			
Construction		-	- ·			-			-			-				
Textile and leather		-				-						-				
Non-specified (industry)	0.05	-	3 0.03		47.44			· · · ·	-			1.97		-		
Transport Road	0.0				17.1:			-				1.97	-			
Road Domestic aviation	0.0	3 16.4-	- 0.03		16.6										-	
Domestic aviation Rail		-	- 0.03		0.3							-		-		
Hall Pipeline transport		-			0.5							-				
Pipeline transport Domestic navigation		-			0.0							-				
Non-specified (transport)		-			0.0	2						-				
Other	0.65	5 0.04		0.01	0.3	5 0.18						30.65			20.14	
Residential	0.6		-	0.01	0.5							27.72				
Commercial	0.0			0.01								2.87			- 0.34	
	0.0	- 0.0			0.3							0.06			- 0.0018	
Agriculture		- 0.0	+ ·	-	0.3							0.06			- 0.00 k	
Fishing				-			-					-				
Non-specified (other)	_	-		<u> </u>							,	-				-
Non-energy use			-	-			-				-	-		-		

As indicated in Figure 1, virtually all the AT* templates rely on the information in the EB_<region>(year) (in this case EB_Starter(2013)) workbook including the

- country or region name;
- fuel names and descriptions;
- emissions names, descriptions and rates;
- years the model is to be setup for (noting that TIMES supports model year and data year independence, so the model can be run for other years than those for which data is provided), and
- timeslice definitions and fractions apportioning the year into 4-seasons and 3-day slices (for a total of 12 divisions of the year) to track the timing of the electricity and (seasonal) heat demands.

Note that the milestone years and timeslice values in the TimePeriods&FRs sheet come from the LoadCalibration workbook. Both the SUP and the BY sector templates link to this sheet to get the year and timeslice information. Also, if the LoadCalibration workbook is updated, the years and timeslice information **MUST** be manually changed and the TimePeriods&FRs sheet is structured to allow the updated values to be copied and pasted into the BASE scenario of ANSWER, as shown in Figure 8.

Start year				Milestor	e Years							Pat DeL				T	Disco	und unar	IG DYEAR	2
2013	2015	2020	2025	2030	2035	2040	2045	2050					alues are to b the BASE s		, соруграв	6			(G_DRATE)	0
						Annual	Time Slice	25												
	Spring	Spring Day	Spring night	Spring Peak	Summer	Summer Day	Summer Night	Summer Peak	Winter	Winter Day	Winter Night	Winter Peak	Fall	Fall Day	Fall Night	Fall Peak			TimeSlice	G_YRFR
		1		1000	1.00				1			1	1-21-1	-	1				1	
TimeSlice	SP	SPD 0.147	SPN 0.084	SPP 0.021	5U 0.251	SUD 0.147	SUN 0.084	SUP 0.021	W1 0.246	WID 0.143	WIN 0.082	0.021	FA 0.251	FAD 0.148	FAN 0.083	FAP 0.021			FA	0.2515
rear fraction (G_YPER)	0.251	0.147	0.084	0.0%1	0.251	0.147	0.084	0.021	0.246	0.163	0.082	0.021	0.251	0,148	0.083	0.021		/	FAD	0.0829
	Tim	e slice i	inputs ar	nd secto	ral FR	innuts r	ome fre	om the	Starte	r Loa	d Calib	ration						/	FAP	0.0207
														-		_		-	SP	0.2513
	tem	plate.													Laquil: calcibratio	n is ach	rind or		SPD	0.1466
														G_YFF	Fi are char	ged. cop	sipaste		SPN	0.0838
														these v	alues into	the BASE	scenario.		SPP	0.0209
			Sectoral	Demand	Load fra	tions (CC	M FR)								_	_	_		รม	0.2513
Sector	F770	SPN	SPP	SLD	SUN		and the second second	WIN	WIP	FAD	F401	FAP	Check if 1						SUD	0.1466
ector	SPD	SHN	547	500	SUN	SUP	WID	WIN	WIP	FAD	FAN	FAP	Check if 1						500	0.1466
Agriculture	0.200	0.026	0.024	0.300	0.154	0.046	0.000	0.000	0.000	0.200	0.026	0.024	1000						w	0.2459
ndustry	0.147	0.084	0.021	0.147	0.094	0.021	0.143	0.082	0.021	0.149	0.093	0.021	1000						WID	0.1434
Fransport	0.147	0.004	0.021	0.147	0.084	0.021	0.143	0.082	0.021	0.148	0.083	0.021	1.000						WIN	0.0820
																			WIP	0.0205
Commercial																				
leating	0.126	0.050	0.024	0.000	0.000	0.000	0.384	0.144	0.072	0.126	0.050	0.024	1000							
Hot Water	0.158	0.063	0.030	0.158	0.063	0.030	0.160	0.060	0.030	0.158	0.063	0.030	1000							
ipace Cooling	0.158	0.062	0.030	0.315	0.125	0.060	0.000	0.000	0.000	0,159	0.063	0.030	1,000							
ighting	0.189	0.075	0.036	0.063	0.025	0.012	0.256	0.096	0.048	0.126	0.050	0.024	1000							
Diher	0.158	0.063	0.030	0.158	0.063	0.030	0.192	0.072	0.036	0.126	0.050	0.024	1000							
Residential																				
-leating	0.130	0.048	0.022	0.000	0.000	0.000	0.390	0.144	0.066	0.128	0.046	0.026	1,000							
lot Water	0.163	0.060	0.029	0.163	0.058	0.030	0.163	0.060	0.029	0.160	0.058	0.033	1000							
Space Cooling	0.160	0.060	0.030	0.325	0.15	0.060	0.000	0.000	0.000	0.160	0.058	0.033	1000							
ighting	0.192	0.072	0.036	0.065	0.023	0.012	0.256	0.096	0.048	0.128	0.046	0.026	1.000							
Other	0.160	0.060	0.030	0.163	0.058	0.030	0.192	0.072	0.036	0.128	0.046	0.026	1.000							

Figure 8: Years and Time Slice Data from the EB_Starter Workbook and in ANSWER

Scenario	Parameter		Region	Region2	ltem1	ltem2	ltem3	lte	ltem5	ltem	I/E	2013
BASE	G_DRATE	?	STARTER	-	-	_	-	-	-	-	0	0.0500
Scenario	Parameter		Region	Region2	ltem1	ltem2	ltem3	lte	ltem5	ltem	Ve	due
BASE	G_DYEAR	?	_GLOBAL	-	-	_	-	-	-	-		2,015.00
BASE	G_YRFR	?	STARTER	-	-	_	-	-	FA	-		0.2515
BASE	G_YRFR	?	STARTER	-	-	_	-	-	FAD	-		0.1479
BASE	G_YRFR	?	STARTER	-	-	_	-	-	FAN	-		0.0829
BASE	G_YRFR	?	STARTER	-	-	_	-	-	FAP	-		0.0207
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SP	-		0.2513
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SPD	-		0.1466
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SPN	-		0.0838
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SPP	-		0.0209
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SU	-		0.2513
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SUD	-		0.1466
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SUN	-		0.0838
BASE	G_YRFR	?	STARTER	-	-	_	-	-	SUP	-		0.0209
BASE	G_YRFR	?	STARTER	-	-	_	-	-	WI	-		0.2459
BASE	G_YRFR	?	STARTER	-	-	_	-	-	WID	-		0.1434
BASE	G_YRFR	?	STARTER	-	-	_	-	-	WIN	-		0.0820
BASE	G_YRFR	?	STARTER	-	-	_	-	-	WIP	-		0.0205

The information from the Energy Balance is collected on the EB sheet in the SUP and BY sector templates, which in turn controls the default commodities on the SETUP sheet according to what is currently used in the region to avoid loading those commodities not needed in the energy system.

Note that when a commodity not in the initial year energy balance is needed in the future, simply **BLANK OUT** (not deleted/erased) the 0 found in sector EB sheet, as shown in Figure 8 for COM (D5) --- this then activates said commodity on the SETUP sheet and creates the associated X<sect><fuel> sector delivery processes. For SUP both the source (import/export/domestic) and the total need to be blanked out.

A	В		С	D	E	F	G	н		J	K	L	M	N	0	P	Q	R
	eLaquil:	2013																
	el is needed for new planned																	
	isioned technologies, delete sting zero entry to allow the X		COAANT	COAOBC	COASBC	COALIG	COABKB	COAGWG	COAPEA	OILLPG	OILGSL	OILKER	OILDSL	OILFOI	OILNSO	GASNAT	BIOPSF	BIOGA
	sting zero entry to allow the A is to be created.			Bitumino											Other Oil			
	atching supply must be		Anthracit	us	Sub-										Products		Primary	
activat	ed similarly in the SUP		e (Hard	(Brown	Bituminous		Briquette	Town							(excluding non-	Natural	Solid	
PJ	Sector Name		Coall	_Coal)	Coal	Lignite	s	(Coal) Gas	Peat	LPG	Gasoline	Kerosene	Diesel	Fuel Oil	energy uses)	Gas	Biofuels	Biogas
Commercial	COM		0.013	0	0	0.0053	0	Ó	0	0.0134	0	0	0	0.1794	0	2.8712	0.336	0
Split each by end-																		
CH	Commercial Heating		100%			100%								50%		60%	100%	6
CC	Commercial Cooling															1%		
CWH	Commercial Water Heating													40%		16%		
CCK	Commercial Cooking									100%						20%		
CLT	Commercial Lighting																	
CRF	Commercial Refrigeration																	
COF	Commercial Office Equipme	ent																
CPL	Commercial Public Lighting	1																
CME	Commercial Misc Energy													10%		3%		
	Check 100%		100%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	100%	100%	: 0
FEC by end-use																		
CH	Commercial Heating		0.013	0	0	0.0053	0	0	0	0	0	0	0	0.0897	0	1,72272	0.336	6
CC	Commercial Cooling		0	Ő	0	0	0	0	0	0	0	0	Ő	0	C C	0.028712	0)
CWH	Commercial Water Heating		0	0	0	0	0	0	0	0	0	0	0	0.07176	0	0.459392	0)
CCK	Commercial Cooking		0	0	0	0	0	0	0	0.0134	0	0	0	0	0	0.57424	0	D
CLT	Commercial Lighting		0	0	0	0	0	0	0	0	0	0	0	0	C	0	0)
CRF	Commercial Refrigeration		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
COF	Commercial Office Equipme	ent	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
CPL	Commercial Public Lighting	1	0	0	0	0	0	0	0	0	0	0	0		0	0	0)
CME	Commercial Misc Energy		0	0	0	0	0	0	0	0	0	0	0	0.01794	0)
	Total		0.013	0	0	0.0053	0	0	0	0.0134	0	0	0	0.1794	0	2.8712	0.336	1
	Check diff from FEC		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

Figure 9: Sector EB and Commodity Control Sheet

5.2 Supply

The Supply (SUP) sector of the TIMES-Starter has been setup with the basic imports, exports and domestic production for those energy carriers needed to supply the fuels currently consumed by the TIMES-Starter technologies in the database and in accordance with the first year Energy Balance. As mentioned in Section 5.1, the EB sheet in the SUP workbook connects to the EB workbook and is then used to control the fuels and supply options that are activated. If a new technology requires a fuel not in the current Energy Balance the 0 in rows 5 and 6-8 (as appropriate for domestic/imports/exports) of the SUP EB sheet should simply be deleted to activate said fuel for future use. The list of current energy carriers is shown in Figure 10.

Name	Region	Description	Name	Region	Description
SUPBIOCHA	STARTER	Renewables - Charcoal	SUPOILASP	STARTER	Asphalt
	STARTER	Renewables - Biodiesels	SUPOILBIT	STARTER	Oil - Bitumen
			SUPOILCOI	STARTER	Oil - Crude Oil
SUPBIOGAS	STARTER	Renewables - Biogases	SUPOILDSL	STARTER	Oil - Diesel
SUPBIOGSL	STARTER	Renewables - Biogasoline	SUPOILDST	STARTER	Distillate
SUPBIOIWA	STARTER	Renewables - Industrial Waste	SUPOILETH	STARTER	Oil - Ethane
SUPBIOJKE	STARTER	Renewables - Bio Jet Kerosene	SUPOILFOI	STARTER	Oil - Fuel Oil
SUPBIOMSW	STARTER	Renewables - Municipal Waste	SUPOILGSL	STARTER	Oil - Gasoline
			SUPOILJET	STARTER	Oil - Jet Fuel
	STARTER	Renewables - Primary Solid Biofuels	SUPOILJTF	STARTER	Jet Fuel
SUPCOAANT	STARTER	Coal - Anthracite	SUPOILKER	STARTER	Oil - Kerosene
SUPCOABFG	STARTER	Coal - Blast Furnace Gas	SUPOILLPG	STARTER	Oil-LPG
SUPCOABKB	STARTER	Coal - Briquettes	SUPOILLUB	STARTER	Oil - Lubricants
SUPCOACCO	STARTER	Coal - Coking Coal	SUPOILNAP	STARTER	Oil - Naphtha
SUPCOACOG	STARTER	Coal - Coke Oven Gas	SUPOILNGL	STARTER	Oil - Natural Gas Liquids
			SUPOILNSO	STARTER	Oil - Non-specified Oil Products
SUPCOAGCO	STARTER	Coal - Gas Coke	SUPOILPCO	STARTER	Oil - Petroleum Coke
SUPCOAGWG	STARTER	Coal - Gas Works Gas	SUPOILPES	STARTER	Petrochemical Feedstocks
SUPCOALIG	STARTER	Coal - Lignite	SUPOILPTC	STARTER	Petroleum Coke
SUPCOAOBC	STARTER	Coal - Other Bituminous Coal	SUPOILRFE	STARTER	Oil - Refinery Feedstocks
SUPCOAORG	STARTER	Coal - Other Recovered Gases	SUPOILRFO	STARTER	Residual
SUPCOAPEA			SUPRNWETH	STARTER	Ethanol - Supply
	STARTER	Coal-Peat	SUPRNWGEO		Renewables - Geothermal
SUPCOASBC	STARTER	Coal - Sub-Bituminous Coal	SUPRNWH2	STARTER	Hydrogen - Supply
SUPGASNAT	STARTER	Natural Gas: Supply	SUPRNWHYD	STARTER	Renewables - Hydro
SUPGASPIP	STARTER	Natural Gas: Pipeline	SUPRNWSOL	STARTER	Renewables - Solar
SUPNUCLER	STARTER	Nuclear: Supply	SUPRNWTWO		Renewables - Tide, Wave and Ocear
E COLHOOLEIT	OWNER	настеал сарру	SUPRNWWIN	STARTER	Renewables - Wind

Figure 10: Current Supply Energy Carriers⁹

⁹ This list encompasses all the energy forms listed in the standard IEA Energy Balance. However, currently there may not be technologies that produce/consume some of those listed.

For each SUP<core><type> fuel there needs to be a corresponding IMP-EXP/MIN<energy carrier> process that either takes imports from or sends exports to the IMPEXP region, or produces domestic resources from the MINRNW region respectively, with the current list of resource supply options listed in Figure 11.

impSUPCOACCO-1 STARTER Import Coal - Coking Coal import Coal - Lignite import Coal - Lignite import Coal - Lignite import Coal - Sub-Bituminous Coal import Nuclear: Supply	Name	Region	Description			
Impsuper Coals Big Import Coal - Briquettes Import Coal - Coking Coal MINSUPCOASBC-1 STARTER Extraction Coal - Sub-Bituminous Impsuper Coals Coll STARTER Import Coal - Coking Coal MINSUPGASNAT-1 STARTER Extraction Coal - Sub-Bituminous Impsuper Coals Coll STARTER Import Coal - Lignite MINSUPCOASBC-1 STARTER Extraction Coal - Sub-Bituminous Impsuper Coals Coll STARTER Import Coal - Sub-Bituminous RNWSUPBIOLCOI-1 STARTER Extraction Coal - Sub-Bituminous Impsuper Coals Coll STARTER Import Coal - Sub-Bituminous RNWSUPBIOLCOI-1 STARTER Renewables - Biogases Import Natural Gas: Supply Import Nuclear: Supply RNWSUPBIOGSL-1 STARTER Renewables - Biogases Import Nuclear: Supply Import Oil - Crude Oil RNWSUPBIOSL-1 STARTER Renewables - Biogases Import Oil - Crude Oil Import Oil - Crude Oil RNWSUPBIONXE-1 STARTER Renewables - Biogases Import Oil - Crude Oil Import Oil - Crude Oil RNWSUPBIONXE-1 STARTER Renewables - Industrial Waste Import Oil - Crude Oil Import Oil - Crude Oil RNWSUPBIONSW-1 STARTER Renewables - Biogases	EXPSUPCOASBC-1	STARTER	Export Coal - Sub-Bituminous Coal			
 IMPSUPOILLPG-1 STARTER Import Oil - LPG IMPSUPOILNGL-1 STARTER Import Oil - Natural Gas Liquids RNWSUPRNWWIN-1 STARTER Renewables - Wind 	 IMPSUPCOAANT-1 IMPSUPCOABKB-1 IMPSUPCOACCO-1 IMPSUPCOALIG-1 IMPSUPCOASBC-1 IMPSUPCASBAT-1 IMPSUPCASBAT-1 IMPSUPOILCOI-1 IMPSUPOILCOI-1 IMPSUPOILDSL-1 IMPSUPOILGSL-1 IMPSUPOILGSL-1 IMPSUPOILGSL-1 IMPSUPOILGSL-1 IMPSUPOILGET-1 IMPSUPOILKER-1 IMPSUPOILLER-1 IMPSUPOILLER-1 	STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER	Import Coal - Anthracite Import Coal - Briquettes Import Coal - Coking Coal Import Coal - Lignite Import Coal - Sub-Bituminous Coal Import Natural Gas: Supply Import Nuclear: Supply Import Oil - Crude Oil Import Oil - Diesel Import Oil - Diesel Import Oil - Gasoline Import Oil - Jet Fuel Import Oil - Kerosene Import Oil - Kerosene	MINSUPCOASBC-1 MINSUPGASNAT-1 MINSUPGASNAT-1 MINSUPBIODSL-1 RNWSUPBIODSL-1 RNWSUPBIOGAS-1 RNWSUPBIOJKE-1 RNWSUPBIOJKE-1 RNWSUPBIOJKE-1 RNWSUPBIOPSF-1 RNWSUPBIOPSF-1 RNWSUPRNWGEO-1 RNWSUPRNWGEO-1 RNWSUPRNWSOL-1 RNWSUPRNWSOL-1	STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER	Extraction Coal - Sub-Bituminous Coal Extraction Natural Gas: Supply Extraction Oil - Crude Oil Renewables - Biogasels Renewables - Biogasels Renewables - Biogasoline Renewables - Bio Jet Kerosene Renewables - Bio Jet Kerosene Renewables - Municipal Waste Renewables - Primary Solid Biofuels Renewables - Primary Solid Biofuels Renewables - Geothermal Renewables - Solar Renewables - Solar Renewables - Tide, Wave and Ocean

Figure 11: Imports & Domestic Resources Supply Options

The Supply template uses the earlier v1 of the ANSWER-TIMES templates, as the IRE parameters are not (yet) available in the newer v2, employed for most of the other templates, so it has a slightly different layout. The most important differences are:

- there is a single ITEMS sheet for commodities, processes, and user constraint declaration;
- there are different data load sheets depending upon the nature of the information to be handled;
- the parameters run down the rows rather than across the columns, and
- to the right of the I/E column the individual columns are taken in the order that the periods are handled in ANSWER *** Regardless of the header on Row-7 ***.

The SETUP sheet in the Supply template operates similarly to the other templates with one additional wrinkle. As shown in Figure 12 and discussed below, the user may provide factors that are applied to the assumed price for the various energy supply options and to the initial year supply to set the final period limit – linearly interpolated.

A B	С	D	E
RNW	Renewable	C	
* Source / Price Step		Gary: IRE multipler f	or EPA or other IRE (if
-1			need to set price on
-2	new	SupplyPrice sh	
* Imports			
* Electricity & Heat		Price factor	Bound factor
IMPELCT-1	Import Electricity: Transmission	1	1.
GRD-ELCD-1	Electricity: Distribution		1
GRD-LTHC-1	Low-temperature Heat: Central		1
GRD-ELCD-2	Electricity: Distribution - new		nolim
GRD-LTHC-2	Low-temperature Heat: Central - new		nolim
*Coal			
IMPSUPCOAANT-1	Import Supply - Anthracite (Hard Coal)	1	1.
* IMPSUPCOACCO-1	Import Supply - Metalurgical (Coking Coal)	1	
IMPSUPCOAOBC-1	Import Supply - Bituminous (Brown Coal)	1	nolim
IMPSUPCOASBC-1	Import Supply - Sub-Bituminous Coal	1	
IMPSUPCOALIG-1	Import Supply - Lignite	0.85	
* IMPSUPCOAGCO-1	Import Supply - Coke	1	
* IMPSUPCOABKB-1	Import Supply - Briquettes	1.1	
* IMPSUPCOAGWG-1	Import Supply - Town (Coal) Gas	1	
* IMPSUPCOACOG-1	Import Supply - Coke Oven Gas	1	
* IMPSUPCOABFG-1	Import Supply - Blast Furnace Gas	1	
IMPSUPCOAORG-1	Import Supply - Other coal product	1	nolim
* IMPSUPCOAPEA-1	Import Supply - Peat	1	
* Oil		1	
* IMPSUPOILCOI-1	Import Supply - Crude Oil	1.1	
* IMPSUPOILNGL-1	Import Supply - Natural Gas Liquids	1.1	

Figure 12: Supply Template SETUP Sheet Price/Bound Factors

The commodity and process names, descriptions, units, and set memberships are entered on the ITEMS sheet, as in Figure 13. Note that the regions in Col-A need to align according to the nature of the possible supply sources.

А	В	C	D	E	F	G	Specify Commodity Set MemberShips
Check Sheet	GLOB	ALIMPEXPMNERW	If a commodity or proces		gion designation in col-A is NOT reginoal specification to the neo		To specify Set Memberships, click on the appropriate L = leaf node in the LHS 'treeview'. Additional Characterization as necessary, and then click on the OK button.
	Comp	onent		Unit(s)	Set Memberships		Set Memberships
	Comp	Name	Description	Unit(s)	Set Memberships	Comment	O Commodity (COM) Additional Characterization
COMMODITIES	5	- DOMINIS (-					N Demand for Energy Services (DEM) L Agricultural (AGR)
* Energy Carrier	rs						O L Agricultural (AGR) O Annual Time Sice Level O L Commercial (COML) O Seasonal Time Sice Level
* Electricity & He	eat						O L Industrial (IND) O Weekly Time Slice Level
MPEXP. STARTER	E	ELCT	Electricity: Transmission	PJ	COM,NRG,DAYNITE,ELC		O L Non-Energy (NE) O Day-Night Time Side Level
STARTER	E	ELCD	Electricity: Distribution	PJ	COM,NRG,DAYNITE,ELC		O L Other (OTH) O L Residential (RES)
STARTER	E	LTHC	Low-temperature Heat Central	PJ	COM,NRG,SEASON,LTHEAT		O L Transportation (TRN)
STARTER	ε	LTH	Low-temperature Heat: Distribution	PJ	COM,NRG,SEASON,LTHEAT		O N Energy Carrier (NRG)
'Coal							O L Conservation (CONSRV) O L Destructly (FLC)
MPEXP.MINRNW, S	έE	SUPCOAANT	Supply - Anthracite (Hard Coal)	PJ	COM,NRG,ANNUAL,FOSSIL		O L Fossi (FOSSIL)
• •	E	SUPCOACCO	Supply - Metalurgical (Colong Coal)	PJ	COM,NRG,ANNUAL,FOSSIL		O L High-Temperature Heat (HTHEAT)
MPEXP,MINENW, S	E	SUPCOADEC	Supply - Bituminous (Brown Coal)	PJ	COM,NRG,ANNUAL,FOSSIL		O L Limited Renewable (LIMRENEW)
MPEXP,MINEWW, S	5 E	SUPCOASBC	Supply - Sub-Bituminous Coal	PJ	COM,NRG,ANNUAL,FOSSIL		O L Low-Temperature Heat (LTHEAT) O L Nuclear (NUCLR)
MPEXP, MINENW, S	5 E	SUPCOALIG	Supply - Lignite	PJ	COM,NRG,ANNUAL_FOSSIL		O L Synthetic (SYNTH)
	E	SUPCOAGCO	Supply - Coke	PJ	COM,NRG,ANNUAL,FOSSIL		O L Unimited Renewable (FRERENEW)
	ε	SUPCOASKS	Supply - Briguettes	PJ	COM,NRG,ANNUAL,FOSSIL		O N Environmental Indicator (ENV) O L Greenhouse Gas (GHG)
•	ε	SUPCOAGWG	Supply - Town (Coal) Gas	PJ	COM,NRG,ANNUAL,FOSSIL		O L Other (OTHENV)
	E	SUPCOACOG	Supply - Coke Oven Gas	PJ	COM,NRG,ANNUAL,FOSSIL		O N Material (MAT)
	E	SUPCOASEG	Supply - Blast Furnace Gas	PJ	COM,NRG,ANNUAL,FOSSIL		O L Volume (MAT_VOL)
MPEVP MINENW 9	F	SUPCOMORS	Supply, Other coal cost of	P.I	COM NRG ANNUAL EDSSI		O L Weight (MAT_WT)

Figure 13: Supply Items Declaration Sheet, and Set Membership Specification Form

After the commodities (energy carriers and emissions) are declared (on the ITEMS sheet according to SETUP), the topology information needs to be provided on the TOP-TIDData sheet (via TOP_IRE indicators), and the main commodity delivered identified on the CommSup-TID_Data sheet (via PRC_ACTUNT), as shown in Figure 14.

TID TRAD	EIMPEXP,MI	NRNW,STAF	TER							TID DATA	IMPEXP, MINRNV	/,STARTER						
Check §	Sheet									Check Sheet								
		Parame	ti Arg1	Arg2	A	4	4	Arg6			Parameter	Arg1		Arg3	Ar	Ar	Arg	3 6
Source / Dest	Internal Region	Topology Parameter	IRE Process	Source Commodity	n/a	n/a	n/a	Internal Commodity	Set IRE	Regions * Resource Supply	Parameter Options	IRE Process	n/a	Commodity	n/a	n/a	n/a	Value
Region	•									S Immonte								
			le region must be sp	ecified in colu	mn A	(a co	omma	-separated re	gion	* Electricity & Heat								
Resour	ce Supply	Options								IMPEXP,STARTER	PRC ACTUNT	IMPELCT-1		ELCT				
* Impor	rts									*Coal	FRC_ACTONI	INFELCI-I		LLCI		-		
	ity & Heat									IMPEXP.STARTER	PRC ACTUNT	IMPSUPCOAANT-1		SUPCOAANT				
MPEXP	STARTER	TOP IRE	IMPELCT-1	ELCT	-	-		ELCT	1		PRC_ACTUNT	IMPSUPCOACCO-1	-	SUPCOACCO	-	-	-	
Coal										IMPEXP.STARTER	PRC_ACTUNT	IMPSUPCOA0BC-1		SUPCOACCO	-	-		
MPEXP	STARTER	TOP IRE	IMPSUPCOAANT-1	SUPCOAANT	-	-		SUPCOAANT	1	IMPEXP.STARTER	PRC ACTUNT	IMPSUPCOASBC-1		SUPCOASBC	-	-	_	
	STARTER		IMPSUPCOACCO-1	SUPCOACCO	-	-		SUPCOACCO	1	IMPEXP.STARTER	PRC ACTUNT	IMPSUPCOALIG-1		SUPCOALIG		-		
MPEXP	STARTER		IMPSUPCOAOBC-1	SUPCOAOBC	-	-		SUPCOAOBC	1	*.STARTER	PRC ACTUNT	IMPSUPCOAGCO-1		SUPCOAGCO	-	-	-	
MPEXP	STARTER	TOP IRE	IMPSUPCOASBC-1	SUPCOASBC	-	-	-	SUPCOASBC	1	* STARTER	PRC ACTUNT	IMPSUPCOABKB-1	-	SUPCOABKB	-	-	-	
MPEXP	STARTER	TOP IRE	IMPSUPCOALIG-1	SUPCOALIG	-	-	-	SUPCOALIG	1	* STARTER	PRC ACTUNT	IMPSUPCOAGWG-1	-	SUPCOAGWG	-	-	-	
	STARTER	TOP_IRE	IMPSUPCOAGCO-1	SUPCOAGCO	-	-	-	SUPCOAGCO	1	* STARTER	PRC ACTUNT	IMPSUPCOACOG-1	-	SUPCOACOG	-	-	-	
		TOP_IRE	IMPSUPCOABKB-1	SUPCOABKB	-	-	-	SUPCOABKB	1	*.STARTER	PRC ACTUNT	IMPSUPCOABFG-1	-	SUPCOABEG	-	-	-	
	STARTER	TOP_IRE	IMPSUPCOAGWG-1	SUPCOAGWG	-	-		SUPCOAGWG	1	IMPEXP.STARTER	PRC ACTUNT	IMPSUPCOAORG-1	-	SUPCOAORG	-	-	-	
		TOP_IRE	IMPSUPCOACOG-1	SUPCOACOG	-	-		SUPCOACOG	1	*,STARTER	PRC ACTUNT	IMPSUPCOAPEA-1	-	SUPCOAPEA	-	-	-	
		TOP_IRE	IMPSUPCOABFG-1	SUPCOABEG	-	-		SUPCOABFG	1	* Oil	_							
MPEXP		TOP_IRE	IMPSUPCOAORG-1	SUPCOAORG	-	-		SUPCOAORG	1	*.STARTER	PRC ACTUNT	IMPSUPOILCOI-1		SUPOILCOI	-	-	-	
	STARTER	TOP_IRE	IMPSUPCOAPEA-1	SUPCOAPEA	-	-	-	SUPCOAPEA	1	* STARTER	PRC ACTUNT	IMPSUPOILNGL-1	-	SUPOILNGL	-	-	-	
' Oil										* STARTER	PRC ACTUNT	IMPSUPOILRFE-1	-	SUPOILREE	-	-	-	
		TOP_IRE	IMPSUPOILCOI-1	SUPOILCOI	-	-		SUPOILCOI	1	*,STARTER	PRC ACTUNT	IMPSUPOILETH-1	-	SUPOILETH	-	-	-	
		TOP_IRE	IMPSUPOILNGL-1	SUPOILNGL	-	-		SUPOILNGL	1	IMPEXP, STARTER	PRC ACTUNT	IMPSUPOILLPG-1	-	SUPOILLPG	-	-	-	
		TOP_IRE	IMPSUPOILRFE-1	SUPOILRFE	-	-		SUPOILRFE	1	IMPEXP.STARTER	PRC ACTUNT	IMPSUPOILGSL-1	-	SUPOILGSL	-	-	-	
		TOP_IRE	IMPSUPOILETH-1	SUPOILETH	-	-		SUPOILETH	1	IMPEXP, STARTER	PRC ACTUNT	IMPSUPOILJET-1	-	SUPOILJET	-	-	-	
MPEXP		TOP_IRE	IMPSUPOILLPG-1	SUPOILLPG	-	-		SUPOILLPG	1	IMPEXP STARTER	PRC ACTUNT	IMPSUPOILKER-1	-	SUPOILKER	-	-	-	
MPEXP	STARTER				-				1	IMPEXP STARTER	PRC ACTUNT	IMPSUPOILDSI -1	-	SUPOILDSI	-	-	-	
· · · · ·	SETUP	EB R	EGIONS ITEMS	TOP_IRE-TI	DDa	ta	Su	pply-TID DA	IA	SETUP	EB REGIO	ONS ITEMS	TOP	IRE-TIDData	Su	pply-	TID D	ATA

Figure 14: Supply Options Topology and Product

Data to be associated with the supply options is provided on Supply-TSData and Grid&Pipeline+BNDS sheet, most notably the resource supply costs and any limits (via IRE_PRICE/ACT_BND) for each supply step curve for each commodity, as appropriate. Figure 15 shows some sample prices. The prices are taken from the US-DOE EIA Annual Energy Outlook (AEO), with the user price factor from SETUP applied. Where the AEO does not provide data for a particular fuel, either adjustment factors from SETUP are applied to the price of a similar commodity or just placeholders provided where cells are colored according to:

- EPA = white or green, where green denotes the same EIA data used for >1 commodity;
- IRE = blue not in EIA price, but instead derived from another IRE;
- Other = yellow when pull from other sources, or
- Non-specified = red text, not yet setup user to provide.

These prices are provided merely as a starting point to get the model running and behaving reasonably. The user needs to adjust the price information and update the potential limits over time for their situation. Furthermore, it may be the case that a particular commodity has more than one source (e.g., imports from different countries) and price (for example, less expensive open pit and more expensive mine coal). If this is the case then the entries for a similar supply option should be copied/inserted on the SETUP, Items, TOP_IRE, both Supply sheets as well as the BNDs sheet, incrementing the final character price index for each new supply source incremented (see rows 81-83 of the SETUP sheet). Note that with respect to both the price and bounds the user is free to drop the EIA-tied formulas and enter their data over the time horizon.

Figure 15: Supply Options Prices

TS TRADE	IMPEXP,	MINRNW,ST	ARTER								r Key:				
Check She											IP(factor)*dat			the come F	TA data us
Спеск зне	eet												green denotes ut instead deriv		
Populate		Parame	t Arg1	Arg2	Arg3		Arg	E Ar	r I/E C	PP - Oth	er = yellow wł	nen pull fron	n other sources		
DataYea	rs									- Nor	<u>n-specified = re</u>	ed text, not	yet setup - use	er to provid	e
Internal Region	Source/ Dest Region	Price Parameter	IRE Process	Commodity	Time slice	n/ a	Import/ Export	n/a	I/E Opt	2013	2015	2020	2025	2030	2035
* On TS TR	ADE shee	et, a single	region must be s	pecified in col	umn A (a	cor	nma-sep	arate	d reg	ion-list i	s not allowed	I)			
* Resource	Supply C	ptions													
* Imports															
* Electricity	& Heat														
STARTER		IRE PRICE	IMPELCT-1	ELCT	ANNUAL	-	IMP		0	36.04	36.30	37.13	37.07	38,18	39.34
*Coal															
STARTER	IMPEXP	IRE PRICE	IMPSUPCOAANT-1	SUPCOAANT	ANNUAL		IMP		0	2.47	2.54	2.91	3.11	3.34	3.52
R			IMPSUPCOACCO-1		ANNUAL		IMP		0			5.47		7.53	8.64
STARTER	IMPEXP		IMPSUPCOA0BC-1		ANNUAL		IMP		0	2.47	2.54	2.91	3.11	3.34	3.52
STARTER	IMPEXP	IRE PRICE	IMPSUPCOASBC-1	SUPCOASBC	ANNUAL		IMP		0	2.47	2.54	2.91	3.11	3.34	3.52
STARTER	IMPEXP	IRE PRICE	IMPSUPCOALIG-1	SUPCOALIG	ANNUAL		IMP		0	2.44	2.50	2.87	3.07	3.29	3.47
		IRE_PRICE	IMPSUPCOAGCO-1	SUPCOAGCO	ANNUAL		IMP	2	0	11.60	1				
*		IRE_PRICE	IMPSUPCOABKB-1	SUPCOABKB	ANNUAL		IMP		0	3.16	3.24	3.72	3.97	4.26	4.50
*		IRE_PRICE	IMPSUPCOAGWG-	SUPCOAGWG	ANNUAL		IMP		0	11.60					
*		IRE_PRICE	IMPSUPCOACOG-1	SUPCOACOG	ANNUAL		IMP		0	11.60					
*			IMPSUPCOABFG-1		ANNUAL		IMP		0	11.60					
STARTER	IMPEXP		IMPSUPCOAORG-1		ANNUAL		IMP		0	11.60		11.60	11.60	11.60	11.60
*		IRE_PRICE	IMPSUPCOAPEA-1	SUPCOAPEA	ANNUAL		IMP		0	11.60					
* Oil															
*			IMPSUPOILCOI-1	SUPOILCOI	ANNUAL		IMP		0	8.52		7.37	8.32	9.08	9.90
t			IMPSUPOILNGL-1	SUPOILNGL	ANNUAL		IMP		0	8.58		11.30	12.31	13.54	14.88
t			IMPSUPOILRFE-1	SUPOILRFE	ANNUAL		IMP		0	11.60					
e			IMPSUPOILETH-1	SUPOILETH	ANNUAL		IMP		0	11.60					
STARTER	IMPEXP		IMPSUPOILLPG-1	SUPOILLPG	ANNUAL		IMP		0	8.60		11.33	12.34	13.57	14.91
STARTER	IMPEXP		IMPSUPOILGSL-1	SUPOILGSL	ANNUAL		IMP		0	38.03		31.96	34.19	35.64	37.98
STARTER	IMPEXP	IRE_PRICE	IMPSUPOILJET-1	SUPOILJET	ANNUAL		IMP		0	28.72	23.81	24.32	27.43	29.62	32.27
	SETUP	EB RE	GIONS ITEMS	TOP_IRE-			Supply	v-TID	DAT	A S	upplyPrice-	TSData	Grid&Pipeli		1

It is expected that all fuels can be found in the IEA energy balance needed for a country. However, if you do need to add a fuel, use a column that's not needed on the Energy Balance sheet of the EB workbook, which should then cascade into the Supply (and the BY workbooks --- REMEMBER to open/save all said EB dependent workbooks when making changes to the energy balance specification.)

Note that any emissions that are to be associated with the energy carriers also need to be provided and their emission rate specified on a CommData sheet drawn from the EB workbook. The current template contains sector wide emissions accounting for fuel-based CO₂, CH4, and N2O. Provision for handling SO₂ and NOx for other sectors and PM10 for the electric sector emissions could also be extracted from the US9r database, though is beyond the scope of the Starter model (currently).

Also, note that since the TIMES-Starter is (currently) a single region model there is no internal bi-lateral trade depicted.

5.3 Power Sector

5.3.1 Organization of the Power Sector Workbooks

This portion of the database resides in the BY/NT-PP workbooks, which contain several power plant process data sheets, as summarized in Table 4, along with their corresponding EPA-US9r and DEA data sheets. In addition, though not listed, as discussed in the introduction to this Section, the BY template includes an EB sheet tied to the EB workbook, both have a SETUP and Commodity/Process declaration sheets. The SETUP tab in the NT template is linked directly to the corresponding BY sheet for the commodity and plant type names to help ensure consistency. The final sheet (ProcData_XPRCs) defines

the sector fuel and emissions tracking processes (XPWR<fuel>) that link the supply commodities to the electric power sector, and is only found in the BY sheet. [If another new transmission line is needed it should be added to the SUP template with the appropriate start year (NCAP_START) and cost (NCAP_COST)].

The inclusion/exclusion and any adjustment to the names/descriptions of the technologies to be included in your TIMES model is fully controlled by the SETUP sheet for all the EPA/other plants from which data is taken. If you want to add additional plants, it is recommended that their names be built by copying/pasting a similar plant on SETUP, then adding a counter (or quality indicator) to the end of the name. The plant then needs to be added to Processes and the Non-EPA-PP (or other) ProcData loadsheets, either with data entered directly or by linking to a source data sheet (see the DEA plants/sheets for examples).

Spreadsheet Name	Description
ProcData_NewPP	New power plant technologies using coal, gas, nuclear, biomass and geothermal.
ProcData_LFG&MSW	New power plant that use landfill gas or municipal solid waste.
ProcData_CHP	New combined heat & power plants.
ProcData_CCS	New coal & gas power plants with carbon sequestration, as well as existing plant retrofit options, and a "sink" to receive the sequestered CO ₂ .
ProcData_Solar&Wind	New solar & wind power plants.
ProcData_XPRCs	Sector fuel processes to move energy carriers from SUPply to PoWeR sector. [BY only]

Table 4: Data Sheets in Electricity Generation Technologies Workbook

5.3.2 Electric Sector Naming Conventions and Units

In TIMES, electric generation technologies take in one or more fuels (energy carriers) and convert them to electricity for use by other processes and demand devices. Power plant capacity units are gigawatts (GW), and power plant investment and fixed operating and maintenance (O&M) costs are given in terms of monetary units per GW. Like all other energy carriers, the electricity produced is denominated in units of petajoules (PJ), and is related to the plant capacity through a conversion factor of 31.536 PJ/GW-yr. Variable O&M costs are thus expressed in monetary units per PJ.

The technologies represented in the power plant database range from fossil fuel conversion technologies to nuclear and renewable technologies, including combined heat and power plants, with options for (new) CO₂ capture and sequestration. The naming convention for electric generating technologies starts with 'Ex' where x=E for electricity and H for CHP or HP for heat-only plants, followed by a six-character identifier representing the fuel (energy carrier) type, and a two-character identifier representing the plant technology type as illustrated in Table 5, where "X0" for existing or "xx" for advanced and additional qualifiers where needed may be appended.

* Pla	ant Types	
	EE	Electricity Generation
	EH	Coupled Heat & Power
	HP	Heating Plant
[•] Te	chnology Types	
	CC	Combined cycle
	CCS	CO2 Capture & Storage
	CP	CHP
	CT	Combustion turbine
	DM	Hydro (Dam)
	EN	Engine
	GT	Gas turbine
	IG	Integrated Gasif.
	LWR	LWR
	OF	Offshore
	ON	Onshore
k	PS	Hydro (Pumped Storage)
	PV	Photovoltaics
	RR	Hydro (Run-of-River)
	ST	Steam turbine
	TC	Thermal Central
	X0	Existing

Table 5: Electricity Generating Plant Type and Qualifiers

Note that in terms of emission control no scrubber retrofits and only new CO₂ sequestration are implemented at this time.

5.3.3 Power Plant Technology Names and Descriptions

The EPA-US9r database is the primary source of data for the new electricity generation technologies, supplemented by the DEA CHP and HPL plants and low-temperature heat devices. This data will be augmented with data from other public sources over time, including but not limited to US DOE, IEA-ETSAP eTech-DS, IEA, and needed.

Table 6 lists the new electricity power plant options found in the database currently. Note that in the case of new hydroelectric plants they need to be characterized based upon local conditions, and therefore those in the NT template serve mainly as examples awaiting user input. Also, in US9r there are numerous instances of biomass, solar and wind, where data from a single region is used and only one wind class just now from the 1st instance encountered by the VLOOKUP --- but grabbing data from a US region more aligned with the country of study and/or adding additional wind classes can readily be done as desired. In general, the user needs to factor in local circumstance (e.g., land and labor costs) for all the power plant data provided.

* 1	Standard Power Pla	ants	
	EECOAOBC-ST	Bituminous (Brown Coal) - Steam turbine	ECSTMRBONE
	EECOASBC-ST	Sub-Bituminous Coal - Steam turbine	ECSTMRSON
	EECOALIG-ST	Lignite - Steam turbine	ECSTMRLONE
	EEGASNAT-CC	Natural Gas - Combined cycle	ENGACC15
	EEGASNAT-CCA	Natural Gas - Combined cycle (Advanced)	ENGAACC
	EEGASNAT-CT	Natural Gas - Combustion turbine	ENGACT15
	EEGASNAT-CTA	Natural Gas - Combustion turbine (Advanced)	ENGAACT
	EECOALIG-IG	Lignite - Integrated Gasif. Combined cycle	ECOALIGEE
	EENUCLER-LWR	Nuclear - LWR	EURNALWR15
*	LFG&MSW Plants		
	EEBIOGAS-EN	Biogases - Engine	ELFGICE
	EEBIOGAS-GT	Biogases - Gas turbine	ELFGGT
	EEBIOGAS-ST	Biogases - Steam turbine	ELFGST
	EEBIOGAS-CC	Biogases - Combined cycle	ELFGGCC
	EEBIOMSW-ST	Municipal Waste - Steam turbine	EMSWSTM
*	Renewables Plants		
	EEBIOPSF-IG	Primary Solid Biofuels - Integrated Gasif. Combined	EBIOIGCC
	EERNWGEO-ST	Geothermal - Steam turbine	EGEOBCFS
	EERNWGEO-A	Geothermal (Advanced)	EGEOEGS
	EERNWSOL-PV4E	Solar - Photovoltaics: Class/CostCat 4E	ESOLPVC4E
	EERNWSOL-TC1E	Solar - Thermal Central: Class/CostCat 1E	ESOLSTON1E
	EERNWWIN-ON3A	Wind - Onshore: Class/CostCat 3A	EWNDON3A
	EERNWWIN-ON3B	Wind - Onshore: Class/CostCat 3B	EWNDON3B
	EERNWWIN-ON3C	Wind - Onshore: Class/CostCat 3C	EWNDON3C
	EERNWWIN-ON3D	Wind - Onshore: Class/CostCat 3D	EWNDON3D
	EERNWHYD-DM	Hydro (Dam)	
*	EERNWHYD-PS	Hydro (Pumped Storage)	
	EERNWHYD-RR	Hydro (Run-of-River)	
*	Danish Energy Age	ncy Technologies	
*	CHP Plants		DEA_CHP
	EHBIOPSF-ST	Coupled Heat & Power Primary Solid Biofuels - Stear	direct link
	EHCOAANT-ST	Coupled Heat & Power Anthracite (Hard Coal) - Steam	direct link
	EHGASNAT-CC	Coupled Heat & Power Natural Gas - Combined cycle	direct link
	EHGASNAT-EN	Coupled Heat & Power Natural Gas - Engine	direct link
*	EHOILFOI-CP	Fuel Oil - CHP	ECHPOIL
-	District Heating Pla	ints	DEA DHP

Table 6: New Power Plant Technologies

Also shown in Table 6 is the EPA technology name that is used for the VLOOKUP into the source data sheets, along with the reminder that the DEA data is linked directly into their associated source data sheets.

Warning: be sure to adhere to the basic naming convention of the components (that is use the same approach and number of characters as for some other entry) or the ANSWER named TechFilters and VBE Sets may no longer operate properly!

By default power plants are included if the commodity is part of the energy balance for the sector (including the removal of the base year 0 in the BY-PP EB sheet and needed in a later year, as discussed earlier) and the technology type is active (that is not "*" out explicitly by the user). Note that the plant and technology type in the BY template become the default in Col-A for inclusion/exclusion in the NT. Any power plant may be eliminated by entering "*" in Col-A on the SETUP sheet in either workbook. If there is a need to added a new power plant, do so by copying a similar type of plant's name on the SETUP and Process declaration sheets, and then the data blocks on the appropriate ProcData_* sheet. Most of the names are carefully built from \$references to their components, so after copying only minor

adjustments need to be done to say change a fuel or technology instance. However, if adding a new technology there will be no corresponding data on the source data sheets, so the appropriate numbers will need to be provided, or linked if you have your own source data sheet that is included in the workbook. Also, be sure when adding an existing plant not yet in the database that the plant also gets added to the Calibration sheet appropriately (by copy/inserting a similar plant in the same group).

5.3.4 Power Plant Technology Data

The power plants are split into five groups by EPA: general (NewPP), landfill gas and municipal solid waste (LFG&MSW), combined heat & power (CHPs), other renewables (Solar&Wind), and carbon capture & storage (CCS). For each of these there are EPA_ and corresponding ProcData_ sheets, where the latter links to the former for the actual data by means of VLOOKUPs. The original EPA plant name is replicated (from the SETUP sheet) for use in the VLOOKUP. For the most part parameters are aligned and run across the workbook in the same order on the ProcData sheet as their associated source data sheets. However, there are exceptions, and the EPA data sheets are indexed to allow easier identification of the proper column index to use in the VLOOKUP expression. In addition, the cost parameters are converted to the local currency based upon the factor entered on the SETUP sheet, and the input oriented MARKAL efficiency inverted for the TIMES default output normalized equivalent.

A snapshot of a power sector ProcData loadsheet is shown in Figure 16. In the case of the DEA sheet (below) note that there is no TechLookUp column, reinforcing the fact that a non-EPA source data sheet is referenced by means of direct links to the source data sheet, as opposed to employing VLOOKUP.

Figure 16:	Power	Sector	New	Plants	Loadsheet
------------	-------	--------	-----	---------------	-----------

	cName.	ProcDesc, Units		Commili	CommOUT															
arameter			_			-	1440-313	START		CAPUNIT		AF	FIXOM						INVCOST	INVCOST
Qualifier1							PHC_VIN	TNCAP_STAR	NCAP_TUF	PHC_CAPACI		NCAP_AF-UP	NCAP_FON	ACT_COST				NCAP_DUS	INCAP_COS	INCAP_CC
Qualifier2											ANNUAL	ANNUAL				ACTGRP	ACTGPP			
	Sale of	000000000000	ProcUnit			t Tech		03.45		Entlien					ACTIVITY					4537269
ProcNa Standard Po		ProcDesc	5	CommIN	CommOUT i	v Lookup	DIT	TID		TID						2020	2025	-	2020	2025
		Numinous (Brown I	PJGW	PWREDAD	ELCT	ECSTMPB	ONF	1 2015	45	31.536	0.95	0.5	3170	126	0.3877	0.3891	0.390	4 2779.161	7	
EECOASE	c-st s	ub-Bituminous Co-	PJ,GW	PWRCOAS	380	ECSTMPS	ONF	1 2015	45	31.536	0.95	0.5	31.70	1.26	0.3877	0.3091	0.390	4 2779.161	7	
EEGASNA	T-CC N	latural Gas - Combi	PJGW	PWRGASN		ENGACO	15	1 2015	30	31.536	0.95	0.9	13.39	102	0.4840	0.4840	0.484	0 885.387	7 885.3877	885.3
EEGASNA	T-CC N	latural Gas - Combi	PJGW	PWRGASN	ELCT	ENGAAD	с	1 2020	30	31.536	0.95	0.5	15.62	0.92	0.5306	0.5347	0.538	8 960.610	929.3902	913.7
FEGASNA	T-CT N	latural Gas - Combi	RIGW	PWRGASN	ELCT	ENGACT	5	1 2015	30	31,536	0.95	0.9	7.46	4.36	0.3125	0.3125	0.312	5 939.263	1 939.2631	939.2
		latural Gas - Combi		PWRGASN	ELCT	ENGAAC		1 2020	30	31 536					0.3499		0.399			
					ELCT	0.000														
		ignite - Integrated C		PWRCOAL	ELCT	ECOALIG		1 2015	40	31.536					0.3922	0.4225	0.458			
EENUCLE	R-LWN	luclear - LWR	PJ,GW	PWRNUCL	ER ELCT	EUFNALW	R15	1 2015	45	31.536	0.95	0.5	94.82	0.60	0,3400	0.3400	0.340	4041.677	9 4599.5940	4478.5
EECOALI	S-ST L	ignite - Steam turbi	PJGW	PWRCOAL	IG ELCT	ECSTMBL	ONF	1 2015	45	31 536	0.95	0.9	31.70	126	0.3877	0.3891	0 390	4 2779 161	7	
1	ANS	v2-691-Home	SET		ommodifie	Proce		ocData EF		P Prort	Data_Non-	FPA.PPe	ProcDa	ta_EPA-L	I (+) E 4				10
Paramet		ne ProcDesc	Units				Commil	CommC	1	PRC_VIN	INCAP_STA	RP_TLIFE A	P_ILED PI		ACT_EF	F ACT_E	EFF AC	T_EFF NO	CAP_COST	NCAP_
Paramet Qualifie	ter	ne ProcDesc	Units				CommiN	CommC	н	PRC_VIN	INCAP_STA	R'P_TLIFE A	P_ILED PI	RC_CAPAC	ACT_EF			T_EFF NO	CAP_COST	NCAP_0
Paramet	ter r1	ne ProcDesc	Units				CommiN	CommC			INCAP_STA	R'P_TLIFE A	P_ILED PI	RC_CAPAC		P ACTG	RP AC	_	CAP_COST	NCAP_(
Paramet Qualifie Qualifie	r1 r2	ne ProcDesc		Docc		ProcUnits			Activity	y		R'P_TLIFE A	P_ILED PI		ACTGRI ANNUA	P ACTG	RP AC	INUAL		
Paramet Qualifie Qualifie Proc	r1 r2 Name	Agency Tech	Proc	:Desc		ProcUnits	CommIN		Activity		INCAP_STA	R'P_TLIFE A	P_ILED PI	RC_CAPAC	ACTGR	P ACTG	RP AC	TGRP	CAP_COST	
Paramet Qualifie Qualifie Procl Danish Er	r1 r2 Name nergy		Proc	es				CommO	Activity	y		R'P_TLIFE A	P_ILED PI		ACTGRI ANNUA 2015	P ACTG	RP AC	INUAL		2030
Paramet Qualifie Qualifie Procl Danish Er	r1 r2 Name nergy	Agency Tech	Proc	es			CommIN	CommO SF EL	UT Activity UT I/O	y TID	TID			TID	ACTGRI ANNUA 2015	P ACTG	RP AC	INUAL	2015	2030
Paramet Qualifie Qualifie Proc Danish Er EHBIOF	r1 r2 Name nergy PSF-ST	Agency Tecł	Proc nnologie it & Powe	es er Primary	Solid Biofuel	PJ,GW	CommIN	CommO SF EL LTI	UT Activity UT I/O	y TID	TID 2015	30	-4.5	TID 31.536	ACTGRI ANNUA 2015	P ACTG L ANNU 203	RP AC IAL AN 30 0.29	2050 0.29	2015 3340	2030
Paramet Qualifie Qualifie Proc Danish Er EHBIOF	r1 r2 Name nergy PSF-ST	Agency Tech	Proc nnologie it & Powe	es er Primary	Solid Biofuel	PJ,GW	CommIN	CommO SF EL LTI	UT I/O	y TID	TID			TID	ACTGRI ANNUA 2015	P ACTG L ANNU 203	RP AC	INUAL	2015	2030
Paramet Qualifie Qualifie Proci Danish Er EHBIOF EHCOA	r1 r2 Name nergy PSF-ST ANT-S	Agency Tect Coupled Hea T Coupled Hea	Proc nnologie it & Powe	es er Primary er Anthraci	Solid Biofuel te (Hard Coa	PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/	CommO SF EL UTI NT EL	UT Activity I/O	y <u>TID</u> 1 1	TID 2015 2015	30	-4.5	TID 31.536 31.536	ACTGRI ANNUA 2015 5 0.	 ACTG ANNU 203 29 44 	RP AC IAL AN 30 0.29 0.52	0.53	2015 3340 2621	2030 33- 25:
Paramet Qualifie Qualifie Proci Danish Er EHBIOF EHCOA	r1 r2 Name nergy PSF-ST ANT-S	Agency Tecł	Proc nnologie it & Powe	es er Primary er Anthraci	Solid Biofuel te (Hard Coa	PJ,GW PJ,GW	CommIN	CommO SF EL LTI WT EL LTI IAT	Activity UT I/O CT CT CT CT	y TID	TID 2015	30	-4.5	TID 31.536	ACTGRI ANNUA 2015 5 0.	 ACTG ANNU 203 29 44 	RP AC IAL AN 30 0.29	2050 0.29	2015 3340	2030 33- 25:
Paramet Qualifie Qualifie Proci Danish Er EHBIOF EHCOA	r1 r2 Name nergy PSF-ST ANT-S	Agency Tect Coupled Hea T Coupled Hea	Proc nnologie it & Powe	es er Primary er Anthraci	Solid Biofuel te (Hard Coa	PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/	CommO SF EL LTI WT LTI IAT EL	UT Activity UT I/O CT HC CT HC CT	y <u>TID</u> 1 1	TID 2015 2015	30	-4.5	TID 31.536 31.536	ACTGRI ANNUA 2015 5 0.	 ACTG ANNU 203 29 44 	RP AC IAL AN 30 0.29 0.52	0.53	2015 3340 2621	2030 33- 25:
Qualifie Qualifie Procl Danish Er EHBIOF EHCOA EHGAS	r1 r2 Name nergy PSF-ST ANT-S NAT-C	Agency Tect Coupled Hea T Coupled Hea	Proc nnologie it & Powe it & Powe it & Powe	er Primary er Anthraci er Natural (Solid Biofuel te (Hard Coa Gas - Combin	PJ,GW PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/	CommO SF EL LTI WT EL LTI LTI LTI LTI LTI LTI LTI	UT Activity UT I/O CT HC CT HC CT	y <u>TID</u> 1 1	TID 2015 2015	30	-4.5	TID 31.536 31.536	ACTGRI ANNUA 2015 5 0. 5 0.	 ACTG ANNU 203 29 44 55 	RP AC IAL AN 30 0.29 0.52	0.53	2015 3340 2621	2030 33 25 10
Qualifie Qualifie Procl Danish Er EHBIOF EHCOA EHGAS	r1 r2 Name nergy PSF-ST ANT-S NAT-C	Agency Tecl Coupled Hes C Coupled Hes	Proc nnologie it & Powe it & Powe it & Powe	er Primary er Anthraci er Natural (Solid Biofuel te (Hard Coa Gas - Combin	PJ,GW PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/ PWRGASt	CommO SF EL LTI LTI LAT LTI LAT EL LTI LAT	Activity I/O CT CT CT CT CT CT CT CT CT CT	y 1 1 1 1	TID 2015 2015 2015	30 40 30	-4.5 -4.5 -1.5	TID 31.536 31.536 31.536	ACTGRI ANNUA 2015 5 0. 5 0.	 ACTG ANNU 203 29 44 55 	RP AC NAL AN 30	0.60	2015 3340 2621 1118	2030 33- 25: 10-
Paramet Qualifie Qualifie Procl Danish Er EHBIOF EHCOA EHGAS EHGAS	ANT-S	Agency Tecl Coupled Hea Coupled Hea C Coupled Hea N Coupled Hea	Proc nnologie it & Powe it & Powe it & Powe it & Powe	er Primary er Anthraci er Natural (Solid Biofuel te (Hard Coa Gas - Combir Gas - Engine	PJ,GW PJ,GW PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/ PWRGASI PWRGASI	CommO SF EL LTI VNT EL LTI LAT EL LTI LAT	Activity I/O CT CT CT CT CT CT CT CT CT CT	y 1 1 1 1 1 1 1 1	TID 2015 2015 2015 2015 2015	30 40 30 25	-4.5 -4.5 -1.5 -1	TID 31.536 31.536 31.536 31.536	ACTGRI ANNUA 2015 5 0. 5 0. 5 0.	 ACTG ANNU 203 29 44 55 45 	RP AC AL AN 30 0.29 0.52 0.59 0.49	0.50 0.50	2015 3340 2621 1118 1574	2030 334 255 104 157
Paramet Qualifie Procl Danish Er EHBIOF EHCOA EHGAS	ANT-S	Agency Tecl Coupled Hes C Coupled Hes	Proc nnologie it & Powe it & Powe it & Powe it & Powe	er Primary er Anthraci er Natural (Solid Biofuel te (Hard Coa Gas - Combir Gas - Engine	PJ,GW PJ,GW PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/ PWRGASt	CommO SF EL LTI VNT EL LTI LAT EL LTI LAT	Activity I/O CT CT CT CT CT CT CT CT CT CT CT CT CT	y 1 1 1 1	TID 2015 2015 2015	30 40 30	-4.5 -4.5 -1.5	TID 31.536 31.536 31.536	ACTGRI ANNUA 2015 5 0. 5 0. 5 0.	 ACTG ANNU 203 29 44 55 45 	RP AC NAL AN 30	0.60	2015 3340 2621 1118	2030 33- 25: 10-
Paramet Qualifie Qualifie Procl Danish Er EHBIOF EHCOA EHGAS EHGAS	ANT-S	Agency Tecl Coupled Hea Coupled Hea C Coupled Hea N Coupled Hea	Proc nnologie it & Powe it & Powe it & Powe it & Powe	er Primary er Anthraci er Natural (Solid Biofuel te (Hard Coa Gas - Combir Gas - Engine	PJ,GW PJ,GW PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/ PWRGASI PWRGASI	CommO SF EL LTI NT EL LTI IAT EL LTI IAT DI	Activity T I/O CT CT CT CT CT CT CT CT CT CT CT CT CT	y 1 1 1 1 1 1 1 1	TID 2015 2015 2015 2015 2015	30 40 30 25	-4.5 -4.5 -1.5 -1	TID 31.536 31.536 31.536 31.536	ACTGRI ANNUA 2015 5 0. 5 0. 5 0.	 ACTG ANNU 203 29 44 55 45 	RP AC AL AN 30 0.29 0.52 0.59 0.49	0.50 0.50	2015 3340 2621 1118 1574	2030 33 25 10 15
Paramet Qualifie Qualifie Procl Danish Er EHBIOF EHCOA EHGAS EHGAS	ANT-S	Agency Tecl Coupled Hea Coupled Hea C Coupled Hea N Coupled Hea	Proc nnologie it & Powe it & Powe it & Powe it & Powe	er Primary er Anthraci er Natural (Solid Biofuel te (Hard Coa Gas - Combir Gas - Engine	PJ,GW PJ,GW PJ,GW PJ,GW	CommIN PWRBIOP PWRCOA/ PWRGASI PWRGASI	CommO SF EL LTI NT EL LTI LAT EL LTI I O I EL	Activity T I/O CT CT CT CT CT CT CT CT CT CT CT CT CT	y 1 1 1 1 1 1 1 1	TID 2015 2015 2015 2015 2015	30 40 30 25	-4.5 -4.5 -1.5 -1	TID 31.536 31.536 31.536 31.536	ACTGRI ANNUA 2015 5 0. 5 0. 5 0.	 ACTG ANNU 203 29 44 55 45 	RP AC AL AN 30 0.29 0.52 0.59 0.49	0.50 0.50	2015 3340 2621 1118 1574	2030 33 25 10 15

Note that the vintage flag is set automatically if more than 1 efficiency is provided for a plant, that is if its performance is expected to improve over time.

5.3.5 Calibration of the Initial Year

The power sector needs to properly reflect the first year fuel consumption and generation levels, as well as the proper amount of installed capacity for each plant type. To do this the EB energy balance sheet is automatically filled from the EB workbook, with the Calibration sheet, Figure 17, completed by providing relevant information for the yellow shaded cells related to retirement year, existing capacity, fuel consumed, electricity generated, with the maximum availability and general overal efficiency derived from that information which may be overwritten by the user if desired.

Calibration of power and heat generation	Fuel	Decomissi oning year	Existing Capacity	Fuel consumption	Electricity Produced	Base Year Capacity factor	Availability for future years		Efficiency	
				Est/known	Est/known elc prod	Calc. from Elc and Cap		Based on elc:fuel ratio	Standard Estimate	Model inpu
er Plants			GW	PJ	PJ	%	%	%	%	%
Hydro (Dam) (Existing)	PWRRNWHYD	2040	0.120	1.500	1.500	39.6%	39.64%	100.0%	100.0%	100.09
Hydro (Run-of-River) (Existing)	PWRRNWHYD	2050	0.050	0.50	0.500	31.7%	31.71%	100.0%	100.0%	100.09
Hydro (Pumped Storage) (Existing)	PWRRNWHYD PWRELC	2040				-	0.00%	-		-
Total			0.170	2.000	2.000					
Natural Gas - Combined cycle (Existing)	PWRGASNAT	2030	0.110	6.67	3.000	86.5%	90.0%	45.0%	48.4%	45.0%
Natural Gas - Combustion turbine (Existing)	PWRGASNAT	2025	0.150	11.98	3.355	70.9%	90.0%	28.0%	30.0%	28.0%
Total			0.260	18.650	6.355					
Bituminous (Brown Coal) - Steam turbine (Existing)	PWRCOAOBC	2025	0.060	4.59	1.500	79.3%	90.0%	32.7%	38.8%	32.7%
Sub-Bituminous Coal - Steam turbine (Existing)	PWRCOASBC	2025	0.060	4.50	1.500	79.3%	90.0%	33.3%	38.8%	33.3%
Lignite - Steam turbine (Existing)	PWRCOALIG	2030	0.200	13.64	4.500	71.3%	90.0%	33.0%	38.8%	33.0%
Lignite - Integrated Gasif. (Existing) Combined cycle	PWRCOALIG	2040	0.120	8.57	3.000	79.3%	90.0%	35.0%	39.2%	35.0%
Total			0.440	31.300	10.500					
Nuclear - LWR (Existing)	PWRNUCLER	2035	0.050	2.94	1.000	63.4%	90.0%	34.0%	34.0%	34.0%
Total			0.050	2.940	1.000					
Biogases - Engine (Existing)	PWRBIOGAS	2025	0.020	1.47	0.50	79.3%	90.0%	34.0%	36.0%	34.0%
SETUP EB Calibration Con	nmodities Co	mmData	Processes	ProcData_E	PA-StandardP	P ProcData	_Non-EPA-PPs	··· 🕂 :	•	

Figure 17: Power Sector Calibration Sheet

Note that if for any fuel group the fuel consumption total does not match the Energy Balance an error message will be displayed in the cell about that fuel group with the difference from the EB sheet shown.

As discussed in more detail in Section 6, the work on the Calibration sheets in each BY workbook is the starting point for the calibration process. The cycle involves running the model (for just the first period if desired) and using the VBE calibration check workbook to see how well the model is aligning with the energy balance, returning to the BY Calibration sheets to refine plant capacity, consumption and production (and derived efficiency) assumptions as needed.

5.4 Demand Sectors

There are five (5) demand sectors in the TIMES-Starter:

- Agriculture;
- Commercial;
- Industry;
- Residential, and
- Transportation.

Each sector is contained in a separate pair of workbooks (BY/NT-<sect>) that are loaded into their corresponding scenarios in the TIMES-Starter database. Within each workbook the standard set of worksheets introduced earlier in Table 1 can be found. Unless otherwise noted, the demand for energy services is in petajoules (PJ).

5.4.1 Agriculture

The US9r model does not explicitly breakout the Agriculture sector. However, the Asian Development Bank Pakistan Integrated Energy Model project (Pak-IEM)¹⁰ did breakout the agriculture sector into four services (Tractors, Irrigation, Other), with associated devices as shown in Figure 18.

* Ei	nd-Use Services	
	AWP	Agriculture Water Pumping
	ATH	Agriculture Tractors - Hauling
ŧ	ATF	Agriculture Tractors - Farm Op.
	AOE	Agriculture Other Use
Q	uality	
	-1	-Improved
	-S	-Standard
* Ti	ractor type	
	-В	>55hp
	-S	<55hp
	-C	Combine
* T	ECHNOLOGIES	
* Ag	griculture Water P	umping
	AWPOILDSL-S	Agriculture Water Pumping: Diesel to Agriculture-Standard
	AWPOILDSL-I	Agriculture Water Pumping: Diesel to Agriculture-Improved
	AWPELC-S	Agriculture Water Pumping: Electricity to Agriculture-Standard
	AWPELC-I	Agriculture Water Pumping: Electricity to Agriculture-Improved
* Ag	griculture Tractors	- Hauling
	ATHOILDSL-B-S	Agriculture Tractors - Hauling: Diesel to Agriculture>55hp-Standard
	ATHOILDSL-S-S	Agriculture Tractors - Hauling: Diesel to Agriculture<55hp-Standard
	ATHOILDSL-C-S	Agriculture Tractors - Hauling: Diesel to AgricultureCombine-Standard
* Ag	griculture Tractors	- Farm Op.
* Ag	griculture Other U	se
	AOEELC-S	Agriculture Other Use: Electricity to Agriculture-Standard
	AOEOILDSL-S	Agriculture Other Use: Diesel to Agriculture-Standard
*	AOEOILFOI-S	Agriculture Other Use: Fuel Oil to Agriculture-Standard

Figure 18: Agriculture New Processes¹¹

Note that tractors are setup to be able to service separate demands for farm operations and haulage according to the FLO_SHARs, which may need to be adjusted for a particular country. However, only a single Tractors demand is currently specified in the Starter model. If the user wants to separate farm operation from hauling then the ATF end-use service simply has to be uncommented in Col-A of the SETUP sheet in the BY template , and the FLO_SHARs added on the ProcData sheet. Also, the demand projections will need to be provided for each of the two tractor demand services. A snapshot of the Agriculture load sheet is shown in Figure 19.

¹⁰ <u>http://www.decisionwaregroup.com/index.html</u> - International page.

¹¹ Note that *Existing and *Vintage have been physically removed from the SETUP, Items and Data sheets to make them less cluttered and cleaner, though they are present on the US9r source data worksheets.

TOC STARTER													•			
heck Sheet Na	ame, ProcDesc, Units		CommIN	CommOU	r											
Parameter						NCAP_START	NCAP_TLIFE	NCAP_COST	NCAP_FOM	ACT_COST	NCAP_AFA-UP	FLO_SHAR-FX	FLQ_SHAR-FX	ACT_EFF	ACT_EFF	ACT_EFF
Qualifier1												ATH	ATF	ACTGRP	ACTGRP	ACTERP
Qualifier2												ANINEIAL	ANNUAL	ANNELIAL	ANNUAL	ANNALAL
ProcName	ProcDesc	Proc Units	CommIN	CommOUT	Activity NO	TID									2015	2
iew				ACIE												
AWPOILDSL-S	Agriculture Water Pumping: Diesel to Agriculture-Stand	rc PJ,PJ	AGROILDSL	AWP		2015	15	10.7116	0.111	0.0555	0.0636			0.0924	0.0946	0.0
AWPOILDSL-I	Agriculture Water Pumping: Diesel to Agriculture-Improv	e PJ.PJ	AGRELC	AWP		2015	1	32,2552	0.1110	0.0555	0.0636			0.1694	0.1734	0
AWPELC-S	Agriculture Water Pumping: Electricity to Agriculture-Sta	n PJ,PJ	AGRELC	AWP		2015	5	10.7116	0.111	0.0555	0.0636			0.3749	0.3838	0
AWPELC-I	Agriculture Water Pumping: Electricity to Agriculture Imp	n PJ.PJ	AGRELC	AWP		2015	1	18.6276	0.1110	0.0555	0.1124	1		0.4388	0.4493	8 0.
ADECILDSL-B	S Agriculture Other Use: Diesel to Agriculture>55hp-Stand	n PJ,PJ	AGROLOS	ATH		2015	1	12.0084	0.11	0.0555	0.1124	0 1795		0.2625	0.2688	0
				ATE								0.030	0.8201	(
ADECILDSL-S	-S Agriculture Other Use, Diesel to Agriculture (55hp-Stand	ex PJPJ	AGRCILDSL	ATH		2015	15	32,2952	0.111	0.0555	0.0636	0.1735		0.2100	0.2150	0.
AGEOLDSL-C	S Agriculture Other Use: Diesel to AgricultureCombine-Sta	x PJPJ	AGROLOS	ATF		2015	6	18.6276	0.111	0.0555	0.1124		0.0201	0.1575	0.1613	0
ADEELC-S	Agriculture Other Use: Electricity to Agriculture-Standard	PJPJ	AGRELC	ATH		2015	5	36.2072	0.111	0.0555	0.1235	1		10500	10750	1
AGEOILDSL-S	Agriculture Other Use: Diesel to Agriculture-Standard	PJPJ	AGROILDS	ADE		2015	5	43.4487	0,111	0.0555	0.1164			1.0500	10750	1
AN	Sv2-691-Home SETUP REGIONS		modities	Process	or 1 (CommData		ta AGR		R-Existin	PIEM_A	(+) ;				. ·

Figure 19: Agriculture New Options Loadsheet

As already noted, the BY template includes an EB sheet tied to the EB workbook, both have a SETUP and Commodity/Process declaration sheets. The NT template SETUP tab is linked directly to the corresponding BY sheet for the commodity and device names to help ensure consistency. The final sheet (ProcData_XPRCs) defines the sector fuel and emissions tracking processes (XAGR<fuel>) that link the supply commodities to the Agriculture sector, and is only found in the BY sheet. If new commodities not found in the original first year energy balance are needed for future years, as discussed in Section 6, the 0 on row-5 of the BY-AGR EB sheet for said fuel should be deleted, activating the fuel and associated XAGR<fuel> process.

Any Agriculture component may be eliminated by entering "*" in Col-A on the SETUP sheet. If there is a need to add a new device type, do so by copying a similar type of devices' name on SETUP then Process data blocks on the appropriate ProcData_* sheets. Most of the names are carefully built from \$references to their components, so after copying only minor adjustments need to be done to, say, change a fuel or technology instance. However, if adding a new technology there will be no corresponding data on the source data sheets, so the appropriate numbers will need to be provided. Also, be sure when adding an existing device not yet in the database that the device also gets added to the Calibration sheet appropriately (by copy/inserting a similar device in the same group).

Warning: be sure to adhere to the basic naming convention of the components (that is use the same approach and number of characters as for some other entry) or the ANSWER named TechFilters and VBE Sets may no long operate properly!

5.4.1.1 Calibration of the Initial Year

The agriculture sector is rather simplified with only demands for tractors, irrigation and other. Once fuels have been apportioned to those energy serices on the EB sheet the only other action required is to split the tractor demand between small and large tractors (or combines), as seen in Figure 20. When entering any of these device splits, when there is more than one competing device consuming the same

fuel, shares are requested for all but one of them, with the remaining share calculated to ensure the service/fuel total is respected.

Agriculture Water Pumping	EFF	CF	FEC share	energy (PJ)	Energy (PJ)	Capacity (PJ/a)
Agriculture Water Pumping: Diesel to Agriculture- Existing	0.09	0.06	1	0	0.0000	0.00
Agriculture Water Pumping: Electricity to Agriculture- Exist	0.36	0.11	1	0.1246	0.0445	0.40
				0.1246	0.0445	
			from EB	0.1246		
			check if zero	0.0000		
				Final	l la afril	la stalla d
		05	550.1	Final	Useful	Installed
Agriculture Tractors	EFF	CF	FEC share	energy (PJ)	Energy (PJ)	Capacity (PJ/a)
Agriculture Tractors: Diesel to Agriculture>55hp- Existing	0.25	0.12	0.3	0.10587	0.0265	0.21
Agriculture Tractors: Diesel to Agriculture<55hp- Existing	0.20	0.12	0.3	0.10587	0.0212	0.18
Agriculture Tractors: Diesel to AgricultureCombine- Existi	0.15	0.08	0.4	0.14116	0.0212	0.26
				0.3529	0.0688	
			from EB	0.3529		
			check if zero	0.0000		
				Final	Useful	Installed
Agriculture Other Use	EFF	CF	FEC share	energy (PJ)	Energy (PJ)	Capacity (PJ/a)
Agriculture Other Use: Electricity to Agriculture- Existing 0			TEC Share	energy (F3)	0 0000	0.00
			1			0.00
Agriculture Other Use: Diesel to Agriculture- Existing 00	1.00		1	0	0.0000	0.00
Agriculture Other Use: Fuel Oil to Agriculture- Existing 00	1.00	1.00	1	0	0.0000	0.00
				0.0000	0.0000	
			from EB	0.0588		
			check if zero	0.0588		

Figure 20: Agriculture Calibration Sheet

As discussed in Section 6, the work on the Calibration sheets in each BY workbook is the starting point for the calibration process. The cycle involves running the model (for just the first period if desired) and using the VBE calibration check workbook to see how well the model is aligning with the energy balance, returning to the BY Calibration sheets to device share assumptions as needed.

5.4.2 Commercial

The US9r Commercial sector demands are specified for the end-use applications listed in Figure 21, with each of these applications serviced by multiple (sometimes many) devices. In the case of heating/cooling, the Building type is appended to the demand root so that if additional building types are added they are properly distinguished in all the device names. As shown in the figure, there are various types of lighting applications, including CFLs, halogen, incandescent, LED, etc., with different wattage and vintages (year in which they become available). The situation is similar for the other sectors as well. As discussed in Section 10, these various lighting options need to be apportioned by the user according to the general situation in the area of study, otherwise the single most cost-effective option will dominate the service demand. The multiple vintages of a technology in the EPA MARKAL model are replaced by a single technology option by using the vintage feature in TIMES.

The Commercial sector is designed the same as the rest of the EPA US9r referenced templates, in that the SETUP sheet controls what is/is not included for the sector, and the ProcData_COM sheet links directly to its EPA_COM counterpart by means of VLOOKUP based upon the EPA device name grabbed from SETUP in Col-H. In the case of costs, they are converted according to the factor specified in the SETUP tab (inherited from the EB workbook). The names and descriptions employed are assembled on the SETUP sheet according to the components in Figure 21 combined with the commodity consumed.

Building Type * Sector Compon	& End-Use Application ents	Lig	hting Techno	logy Quality & Type
Building Types			AD	Advanced
В			BE	Best
Energy Service	5		IM	Improved
СН	Commercial Heating		ST	Standard
CC	Commercial Cooling		×1	Existing1
CWH	Commercial Water Heating	* Li	ghting Type	
ССК	Commercial Cooking		-C-	CFL-
CLT	Commercial Lighting		-F-	Fluorescent-
CRF	Commercial Refrigeration		-H-	Halogen-
COF	Commercial Office Equipment		- -	Incandescent-
CPL	Commercial Public Lighting		-L-	LED-
CME	Commercial Misc Energy		-D-	High Intensity Discharge
			-R-	Reflector-

Figure 21: Commercial Sector End-use Applications & Lighting Technology Types

As discussed above, the BY template includes an EB sheet tied to the EB workbook, both the BY and NT templates have SETUP and Commodity/Process declaration sheets. The NT SETUP tab is linked directly to the corresponding BY sheet for the commodity and device names to help ensure consistency. The final sheet (ProcData_XPRCs) defines the sector fuel and emissions tracking processes (XCOM<fuel>) that link the supply commodities to the Commercial sector, and is only found in the BY sheet. If new commodities not found in the original first year energy balance are needed for future years, as discussed in Section 6, the 0 on row-5 of the BY-COM EB sheet for said fuel should be deleted, activating the fuel and associated XCOM<fuel> process.

One difference from MARKAL is that heat pumps are represented as a single device servicing both heating and cooling demands, with differing capacity factors and efficiencies. A snapshot of the Commercial load sheet, depicting the Lighting technology data, is shown in Figure 22. In the case of this example, using lighting, note that the units are in billion lumens (lbn-lum).

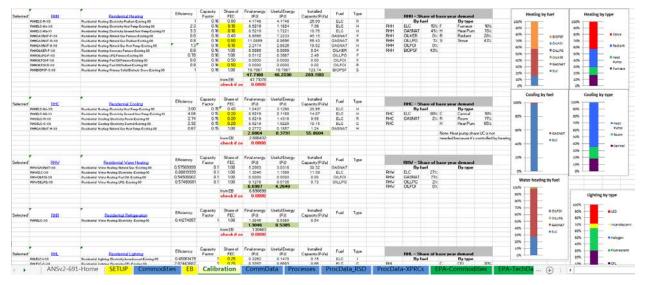
ProcData	STARTER																					•	
Check Sheet	ProcName, ProcD	esc, Units		CommiN	CommOUT				START	LFE	NYCOST				EFF						FROM	DISCRATE	
Parameter					1			And the											Section Sector				
Qualifiert	1			-	•			PHC_WM	NULAP_SI	TAL AP	UINCAP_CO	INCAP_CI	O MCRP_CO	NCAP_C	10000	1007000	1.00		1000	10000	NCAP_FO	NICAP_DH	NJ.AP_A
Qualifierd	1														ACTORP	ACTORP			Contraction of the local sectors of the local secto	CCB			
G La ITAIZ			ProcUni			Activi									AMNUAL	ANNUAL	ANNUAL	ANNUAL	ANNUAL	ANNUAL			
	ProcName	ProcDesc	ts	CommIN	CommOUT	I 19 NO	Tech Lookup	TID	TD			2820	2030	2035		2020	2030	2035					
Space Hea																							
Electric H	eat Pump																						
	CHEELCHAIST	Commercial Heating Electricity Air Heat Pump-Stan	PJPA	COMELC	CHB CCB		CSHAHPSTI0 CSCAHPSTI0		2015	13	6 0.75								3.3	3.25	5 0.16	0.10	
	CHBELC-HA-M	Commercial Heating: Electricity Air Heat Pomp-Impr	PJPJa	COMELC	CHB		CSHAHPHE10 CSCAHPHE10		2015		15 11.03							-	3.4	3.53	2 0.16	0.24	
Ground S	ource Heat Pump																						
Circuita D	CHEELCHG-ST	Commercial Hearing Destricity Ground Hear Pump-	PJPJa	COMELC	CHB		CSHCHPSTIO CSCCHPSTI0		2015	1	0 15.97								3.5	4.8	6 192	0.24	
	CHBELC-H34M	Commercial Heating: Electricity Ground Heat Pump-	PJPA	COMELC	CHB		CSHGHPHEI0 CSCGHPHEI0		2015	\$	0 19.40	-						-	4.9	8.8	5 1.92	0.45	
Electric B	oiler																						
Line Grand D	CHBELC B ST CHEELC BM	Commercial Heating: Electricity Boller Standard Commercial Heating: Electricity Boller-Improved	PJPJa	COMELC	CHB		CSHELBSTR		2015		15 L70 10 Z.40				0.94						0.03		0.2
Natural ou	as Heat Pump	considerably second consideration	1.00.00	Concernance.																			
	CHEGASNAT H ST	Commercial Heating: Natural Gas Heat Pump Stand	PJPJa	COMGASNAT	CHB		CSHNHPSTI0 CSCNHPSTI0		2015	4	0 35.66	24.2	5 14.74						14	1.11	0 0.52	0.18	
	as Furnace				cco		COUNTRYING																
Natural G	CHEGASNAT-F-ST		D.D.L.	COMBASNAT			CSHNGFSTID			17					0.75						0.11	0.18	
	CHEGASNAT F M	Commercial Heating: Natural Gas Furnace Standard Commercial Heating: Natural Gas Furnace Improve		COMGASNAT			CSHNGFHEI0	- L.	2015 2015		5 112 5 117				0.80		. 0.8	9 0.9			0.1		
Natural G	CHEGASNAT-B-ST	Commercial Heating Natural Gas Boiler-Standard	Papa	COMGASNAT	CHO		CSHNGESTID	1	2015	1	5 2.90	20	5		0.71	0.0					0.00	0.18	01
	CHEGASNAT-B-IM	Commercial Heating: Natural Gas Boller-Improved	PJPJA	COMBASNAT	CHB		CSHM3EHE10		2015	1	5 4.34	1			0.91						0.07	0.6	0.2
Fuel Oil Fe																							
	CHBOILFOI F-ST	Commercial Heating: Fuel OI Furnace-Standard	PJPJa	COMOLFOI	CHB		CSHDSFSTIO		2015	18	5 1.52				0.80	6.S.					0.11	1.6	0.2
Fuel Oil B																							
	CHEOLFOREST	Commercial Heating Fuel OI Doller-Standard	PJPA	COMOUTOR	08		CORDERTO		2005	\$	5 2.00				0.0	1					0.02	175	0.8
Other	CHEOLFOI-B-IM	Commercial Heating: Fuel Of Boller-Improved	PJPJa	COMOLFOI	CHB		CSHDSBHE10		2015	3	5 2.86	1			0.81			-			0.02	175	0.2
		A THE I AT CALLS AND	ARLAL.			1	1			1		ii		1	*****								
	ANSv2-692-	Home SETUP Commodities	Proces	ses Proc	Data COM	N I	EPA-Commod	lities	EPA-Teo	hData_C	OM 1	Temp dal	ta for mis	sing ted	b D	H_HE	(1)	4					0

Figure 22: New Technology Commercial Loadsheet

Any Commercial component may be eliminated by entering "*" in Col-A on the SETUP sheet. If there is a need to add a new device type, do so by copying a similar type of devices' name on SETUP then Process data blocks on the appropriate ProcData_* sheets. Most of the names are carefully built from \$references to their components, so after copying only minor adjustments need to be done to say change a fuel or technology instance. However, if adding a new technology there will be no corresponding data on the source data sheets, so the appropriate numbers will need to be provided. Also, be sure when adding an existing device not yet in the database that the device also gets added to the Calibration sheet appropriately (by copy/inserting a similar device in the same group).

Warning: be sure to adhere to the basic naming convention of the components (that is use the same approach and number of characters as for some other entry) or the ANSWER named TechFilters and VBE Sets may no long operate properly!

5.4.2.1 Calibration of the Initial Year


The Residential and Commerical sectors are very similar in terms of preparing and performing the calibration as for the most part they tend to have the same kinds energy services and devices types that meet them. Below in Figure 23 and Figure 24 the EB and Calibration sheets are shown, where the user input of the splits for the end-use services is done on the former and for the associated devices on the latter. When entering the device splits when there is more than one competing device consuming a fuel, shares are requested for all but one of them, with the remaining share calculated to ensure the service/fuel total is respected.

On the Calibration sheet, to the right of the calibration table, summary tables and graphs show the percentage of useful energy (end use service demand) provided by each fuel and/or device type. As these are end use service demand shares, they can be thought of in the Commercial/Residential sector as loosely the share of building type using each fuel/device type. As such, they can serve as feedback on the reasonableness of the fuel and device final energy shares the user has assigned. (For example, they may be compared with survey data on household energy/device use.) However, any changes needed in these service demand shares should be accomplished by adjusting the split of sector fuel consumption to the service demands on the EB or the final energy device shares in the Calibration table until the desired service demand shares are seen in the graphs/summary tables. These percentages also drive the Reference scenario guidance user constraints described in Section 10.

Figure 23: EB Sheet for Residential and Commercial

		COAANT	OILLPG	OILGSL	OILKER	OILDSL	OILFOI	GASNAT	BIOPSF	RNWGEO	RNWSOL	ELC	LTH		
								Natural							
PJ	Sector Name	Anthracite	LPG	Gasoline	Kerosene	Diesel	Fuel Oil	Gas	Biomass	Geothermal	Solar	Electricity	Heat	Total of All	Energy Source
Residential	RSD	0	0.639	0	0.0086	0	0	27.7172	19.7987	0.208	0.0233	13.0463	0	61.4921	
O-Disease base															
Split each by			0.001		4.0.00			0.004	4.0.00			1001			
RHH	Residential Heating		80%		100%			80%)		40%			
RHC	Residential Cooling							1%				20%			
RHW	Residential Water Heating		20%					19%				10%			
RHR	Residential Refrigeration											10%			
RHK	Residential Freezing														
RHL	Residential Lighting											10%			
RHO	Residential Other Appliances											10%			
	Residential Other Appliances - NGA	λ													
	Residential Other Appliances - LPG														
	Check 100%	0%	100%	0%	100%	0%	0%	100%	100%	0%	0%	100%	0%		
FEC by end-	use														
RHH	Residential Heating	0	0.5112	0	0.0086	0	0	22.17376	19.7987	· () 0	5.21852	0	47.71078	
RHC	Residential Cooling	0	0	0	0	0	0	0.277172	C) () 0	2.60926	0	2.886432	
RHW	Residential Water Heating	0	0.1278	0	0	0	0	5.266268	C) () 0	1.30463	0	6.698698	
RHR	Residential Refrigeration	0	0	0	0	0	0	0	C) () 0	1.30463	0	1.30463	
RHK	Residential Freezing	0	0	0	0	0	0	0	C) () 0	0	0	0	
RHL	Residential Lighting	0	0	0	0	0	0	0	C) () 0	1.30463	0	1.30463	
RHO	Residential Other Appliances	0	0	0	0	0	0	0	C) () 0	1.30463	0	1.30463	
	Residential Other Appliances - NGA	0	0	0	0	0	0	0	C) () 0	0	0	0	
	Residential Other Appliances - LPG		0	0	0	0	0	0	C) () 0	0	0	0	
	Total	0	0.639	0	0.0086	0	0	27.7172	19.7987	· .) 0	13.0463	0	61.2098	
	Check diff from FEC	0	0	0	0	0	0	0	0	0.208	0.0233	0	0	0.2823	

Figure 24: Calibration Sheet for Residential and Commercial

As discussed in Section 6, the work on the Calibration sheets in each BY workbook is the starting point for the calibration process. The cycle involves running the model (for just the first period if desired) and using the VBE calibration check workbook to see how well the model is aligning with the energy balance, returning to the BY Calibration sheets to devices shares assumptions as needed.

5.4.3 Industry and Oil Refinery

5.4.3.1 Overview

Because the Industrial sector is comprised of sub-sectors that are much more unique than the common residential and commercial end-use services, a generalized industry sector cannot be pre-assembled in the Starter model. Instead, what is provided is a process for assembling a country-specific industry sector from a combination of EPA and local sources of data.

The approach to modeling the Industrial sector is based on the EPA approach where each industry subsector has a single demand, which corresponds to that sub-sector's activity (output), and a single demand device, which requires specific end-use services, such as process heat, machine drive, etc., to produce a unit of industrial output.

The Starter model energy balance structure is based upon the IEA energy balance categories for Non-OECD countries, which as shown in Table 7 has 13 entries. However, the EPA database contains end-use service shares and technology characterizations for 19 industry sub-sectors, and the overlap between these is illustrated in Table 7 under the EPA header. For example, where EPA has Primary and Secondary steel, IEA has only Iron and Steel. Therefore, the process for building an industry sector in the Starter model begins with identification and mapping of the country's industry sub-sectors, as defined in their national energy balance, to the EPA sub-sectors. Local industry sub-sector experts will need to be consulted to ensure accurate characterization of their particular sub-sector.

The following examples are provided to help illustrate mapping decisions.

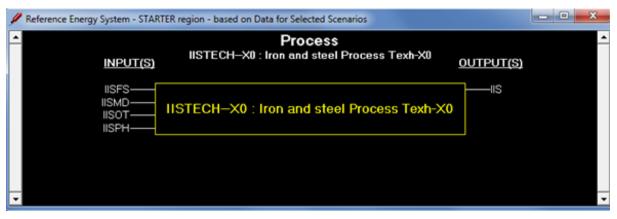
- The energy balance has one entry for Iron and steel: If a primary steel industry exists, look for data on the activity split between primary and secondary (e.g., recycled steel for rebar) production. If no primary steel industry exists, use the Secondary steel end-use service shares and technology characterizations.
- 2. A similar approach can be taken with Non-ferrous metals. If primary aluminum production exists, look for data on the activity split between primary and secondary production and other metals (e.g., copper, nickel, tin) if they exist. Use the end-use service shares and technology characterizations for each of the sub-sector processes that have activity.
- 3. Similarly for Non-metallic minerals, if a Glass industry exists, look for activity data on glass and cement (which will exist in most countries) to determine their share of total Non-metallic minerals activity. Use the end-use service shares and technology characterizations for each of the sub-sector processes that have activity.
- 4. The Paper, pulp and print sub-sector is not as simple as the other sub-sectors, because pulp and paper facilities are often integrated. If activity shares exist, then these can be used, but if not an integrated set of end-use service shares and technology characterizations have been synthesized from the EPA data.

STARTER		EPA											
Iron and steel	Primary Steel	Secondary Steel											
Chemicals and petrochemicals	Organic Chemicals	Inorganic Chemicals	Plastics, fibers, resins	Agricultural Chemicals	Other Chemicals								
Non-ferrous metals	Primary Aluminum	Secondary Aluminum	Other metals										
Non-metallic minerals	Cement	Glass	Other non- metals										
Transport equipment	Other												

Table 7: Mapping of Starter and EPA Industry Subsectors

Machinery	Other				
Mining and quarrying	Other				
Food and tobacco	Food				
Paper, pulp and print	Pulp	Paper	Paperboard	Other pulp & paper	
Wood and wood products	Other				
Construction	Other				
Textile and leather	Other				
Non-specified	Other				

The Industrial sector is handled in a similar manner to the rest of the EPA US9r referenced templates, in that the SETUP sheet controls what is and is not included for the sector. But because the sector is more complex and requires more local information than the other demand sectors, this Guideline document only provides an example of the set-up of one sector (Iron and Steel) with all other industry energy use incorporated into an Other Industry sector. As is the case with the other TIMES-Starter sector workbooks the ProcData_<subsector> sheets link directly to their EPA-TechData_<subsector> counterpart via VLOOKUPs, converting costs as specified on the SETUP sheet.


The Starter IND templates include placeholders for the following Industry subsectors, using the naming conventions shown in Table 8. Following this example for the Iron and Steel subsector, other subsectors can be activated by removing the * from Col-A of the Set-up tab and by adding the existing technology and new technology options for that subsector into new tabs in the BY and NT templates, as described more below.

ID	Description
IIS	Iron and steel
ICH	Chemical and petrochemical
INF	Non-ferrous metals
INM	Non-metallic minerals
ITE	Transport equipment
IMC	Machinery
IMM	Mining and quarrying
IFB	Food and tobacco
IPP	Paper, pulp and print
IWP	Wood and wood products
ICN	Construction
ІТХ	Textile and leather
IOT	Other
IFE	Industry Other (temp) - All

Table 8: Industry Subsector Options

5.4.3.2 Configuring Industry Sub-sectors – Iron & Steel Example

This example of the Iron and Steel (IIS) industry is fully established in the TIMES-Starter, and the associated BY, NT and UC templates are discussed here. For the IIS sub-sector, there is a single demand, which corresponds to industry activity, and a single demand device (IISTECH-X0) which draws on each of the end-use services (PH-process heat, MD-motor drive, FS-feedstocks and OT-Facilities/Other) needed for that sector to deliver a unit of industrial output, as shown in Figure 25.

Figure 25: Industry – Steel End-use Services

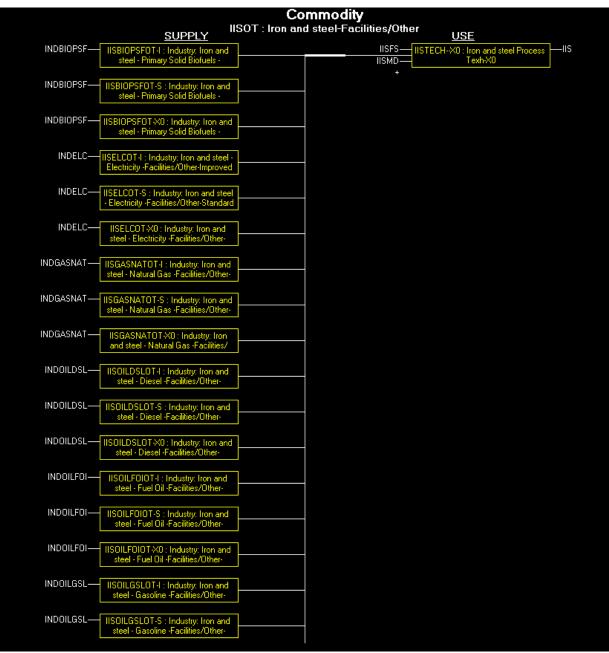
The energy carriers used by the IIS subsector can be identified from the energy balance, but local information is then needed to determine what portion of these energy carriers are used for process heat facilities, motor drive and feedstocks. Subsector data should be used where available and expert judgment used in its absence. As shown below for IIS in the excerpt from the Setup tab of the BY-IND template, an existing technology has been characterized for each non-zero energy carrier/end-use combination, and the corresponding EPA technology identified in the EPA Tech column.

* Iron and Steel		
* Techs by fuel and end	d-use application	EPA Tech
IISCOAOBCPH-X0	Industry: Iron and steel - Bituminous (Brown Coal) -Process heat- Existing 00	IMSEPRHCOA
IISCOALIGPH-X0	Industry: Iron and steel - Lignite -Process heat- Existing 00	IMTEPRHCOA
IISCOAORGFS-X0	Industry: Iron and steel - Other coal product -Feedstock- Existing 00	IMSEFEDCOK
IISOILGSLOT-X0	Industry: Iron and steel - Gasoline -Facilities/Other- Existing 00	IMSEFACDST
IISOILKEROT-X0	Industry: Iron and steel - Kerosene -Facilities/Other- Existing 00	IMSEFACDST
IISOILDSLOT-X0	Industry: Iron and steel - Diesel -Facilities/Other- Existing 00	IMSEFACDST
IISOILFOIOT-X0	Industry: Iron and steel - Fuel Oil -Facilities/Other- Existing 00	IMTEOHTRFL
IISGASNATPH-X0	Industry: Iron and steel - Natural Gas -Process heat- Existing 00	IMTEPRHNGA
IISGASNATOT-X0	Industry: Iron and steel - Natural Gas -Facilities/Other- Existing 00	IMTEFACNGA
IISBIOPSFOT-X0	Industry: Iron and steel - Primary Solid Biofuels -Facilities/Other- Existing 00	IMTEOHTBIO
IISELCPH-X0	Industry: Iron and steel - Electricity -Process heat- Existing 00	IMTEPRHELC
IISELCMD-X0	Industry: Iron and steel - Electricity -Machine Drive- Existing 00	IMTEMDRELC
IISELCOT-X0	Industry: Iron and steel - Electricity -Facilities/Other- Existing 00	IMTEFACELC

Similarly, in the NT-IND template, both Standard and Improved new technology options are generated for the above Existing technology options along with any new energy carrier/end-use application

combinations not currently existing but envisioned for the future (where the user needs to "" out the 0 in the BY-IND EB sheet to activate a commodity not in the current energy balance that is to be available in the future).

The next step in development of the IIS subsector is calibration of the Existing technologies by factoring in the efficiency of the end-use devices. Typical boiler efficiencies are used for the process heat applications, but for the other end-uses (feedstocks, facilities, and motor drive) the EPA database uses efficiency =1, so that only final energy is tracked for these end-use applications. Where end-use efficiency measures are desired, these can be modelled as conservation technologies that reduce final energy use when purchased and deployed.


The Calibration sheet determines the useful energy demand and capacity of existing technologies, and determines the proportions of each IIS end-use service needed to produce a unit of output. These values are used in the template to determine the fixed activity shares as shown below.

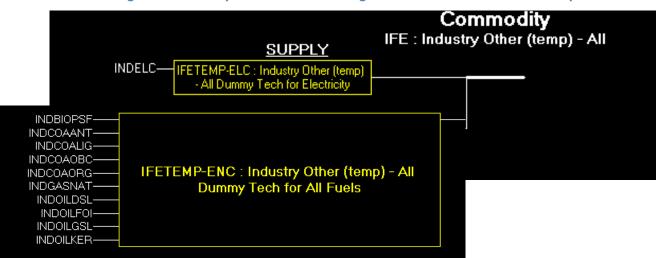
	Scenario	Parameter		Region	Process	CommGroup	TimeSlice	I/E	2013
M	BY-IND	ACT_FLO	?	STARTER	IISTECHX0	IISFS	ANNUAL	0	0.0682
М	BY-IND	ACT_FL0	?	STARTER	IISTECHX0	IISMD	ANNUAL	0	0.1321
М	BY-IND	ACT_FL0	?	STARTER	IISTECHX0	IISOT	ANNUAL	0	0.1002
M	BY-IND	ACT_FLO	?	STARTER	IISTECHX0	IISPH	ANNUAL	0	0.6995

For each of these end-use services there are a number of technology/energy carrier options, which are shown in Figure 26 for IIS Process heat applications. Here we can see that the IIS process heat demand can be met by existing, standard new and improved new technologies consuming coal, natural gas, electricity and process heat from cogeneration plants. A longer list of technology options is available to meet the facility/other services demand, as shown in Figure 27, as well as for feedstocks and motor drive demands.

		Commodity		
		ISPH : Iron and steel-Process heat		
	SUPPLY	ISPH : Iron and steel-Process heat	USE	
INDCOALIG	IISCOALIGPH-I : Industry: Iron and	IISFS—I	ISTECH-X0 : Iron and steel Process	—IIS
	steel - Lignite -Process heat-Improved	IISMD—	Texh-X0	
		+		1
INDCOALIG	IISCOALIGPH-S : Industry: Iron and			
	steel - Lignite -Process heat-Standard			
INDCOALIG	IISCOALIGPH-X0 : Industry: Iron and			
	steel - Lignite -Process heat- Existing			
INDCOAOBC	IISCOAOBCPH-I : Industry: Iron and			
	steel - Bituminous (Brown Coal) -			
INDCOAOBC	IISCOAOBCPH-S : Industry: Iron and			
	steel - Bituminous (Brown Coal) -			
INDCOAOBC	IISCOA0BCPH-X0 : Industry: Iron			
	and steel - Bituminous (Brown Coal) -			
INDELC				
INDELC-	IISELCPH-I : Industry: Iron and steel - Electricity -Process heat-Improved			
	Electricity 4 rocess readminproved			
INDELC-	IISELCPH-S : Industry: Iron and steel			
	- Electricity -Process heat-Standard			
INDELC	IISELCPH-X0 : Industry: Iron and			
	IISELCPH-X0 : Industry: Iron and steel - Electricity -Process heat-			
INDGASNAT	IISGASNATPH-I : Industry: Iron and			
	steel - Natural Gas -Process heat-			
INDGASNAT	IISGASNATPH-S : Industry: Iron and			
	steel - Natural Gas -Process heat-			
INDGASNAT	IISGASNATPH-X0 : Industry: Iron			
	and steel - Natural Gas -Process heat-			
INDLTH	IISLTHPH-S : Industry: Iron and steel - Heat -Process heat-Standard			
	 Heat -Process heat-Standard 			

Figure 26: Iron & Steel – Technologies for Process Heat Production

Figure 27: Iron & Steel – Technologies for Facilities/Other End-uses


The final step in establishing the IIS industry subsector is the enumeration of user constraints (UCs) for the sub-sector fuel shares, which will provide guidelines for the allowed changes in the share of a specific energy carrier. The starting shares (2015) are linked to the BY shares developed in the BY template on the calibration sheet, as seen in Figure 28. The user must then decide if each energy carriers/end-use application needs a bound. UP bounds will limit growth, while LO bounds will limit the decline of a technology.

S&TID DATA	STARTER															10	UP	
Check Shee	•												Eur		xation Fact			~
CHECK SHEE															xation Fact			
	Parameter	Arg1	Arg2	Arg3	Arg4	Arg5	Arg6	I/E Opt					100	in recia	Address and	AD	BE	IM
Populate														Mat	2050 sha	_	_	
DataYears				Process or				I/E Opt						inter	2000 0110			
	Parameter	Constraint Name	EQ Side	TechFilter	Commodity	Timeslice	Туре	or Value	2013	2015	2020	2030	2040	2050				
ron & Stee	- Facility																	
	UCRULE_MARK	IIS-OT-F-GSL-LO	-	IIS-OT-F-GSL	IISOT	-	LO	5		0.000				0.000		t DeLaq		مانت ميناه
	UCRULE_MARK	IIS-OT-F-KER-LO	-	IIS-OT-F-KER	IISOT	-	LO	5		0.000				0.000		piace cai ta where		alue with
	UCRULE_MARK	IIS-OT-F-DSL-LO	-	IIS-OT-F-DSL	IISOT	-	LO	5		0.000				0.000	02	ta where	avaliable	•
	UCRULE_MARK	IIS-OT-F-FOI-LO	-	IIS-OT-F-FOI	IISOT	-	LO	5		0.013				0.013	Maintaine	d at const	ant share	
	UCRULE_MARK	IIS-OT-F-GAS-UP	-	IIS-OT-F-GAS	IISOT	-	UP	5		0.108				0.208				
	UCRULE_MARK	IIS-OT-F-PSF-LO	-	IIS-OT-F-PSF	IISOT	-	LO	5		0.000				0.000				
	UCRULE_MARK	IIS-OT-F-ELC-UP	-	IIS-OT-F-ELC	IISOT	-	UP	5		0.879				0.879	Maintaine	d at const	ant share	
ron & Stee	- Process Heat																	
	UCRULE_MARK	IIS-PH-F-OBC-LO	-	IIS-PH-F-OBC	IISPH	-	LO	5		0.005				0.000				
	UCRULE_MARK	IIS-PH-F-LIG-LO	-	IIS-PH-F-LIG	IISPH	-	LO	5		0.003				0.000				
	UCRULE_MARK	IIS-PH-F-GAS-UP	-	IIS-PH-F-GAS	IISPH	-	UP	5		0.043				0.143				
	UCRULE_MARK	IIS-PH-F-ELC-UP	-	IIS-PH-F-ELC	IISPH	-	UP	5		0.950				0.950	Maintaine	d at const	ant share	

Figure 28: Iron & Steel – UCs to Guide Future Fuel Shares

5.4.3.3 Other Industry Subsectors

For the TIMES-Starter, the industry energy use from remaining subsectors is aggregated into a temporary all other industry demand (IFE). For this "other" category, only final energy shares for electricity and fuels are modeled. Once the local industry subsectors are removed from other and described by their existing and new technologies, this approach will be appropriate for the remaining other industry demand. For this example of the other industry sub-sector, the Industry Other (temp) demand (IFE) is met by a combination of fuels and electricity, which have market shares of 67.2% and 32.8% respectively. Within the fuels group, there are flow shares to apportion the fuels comprising the 67.2% of total energy demand, as shown in Table 9. These shares are set in the BY-IND template on the ProcData_IND(temp) sheet and in the Starter templates, kept constant over the planning horizon. However, the composition of fuels and electricity may be adjusted over time if the composition of the Other subsector is expected to change over time.

Figure 29: Industry – End-use Service Alignment between US9r and Country

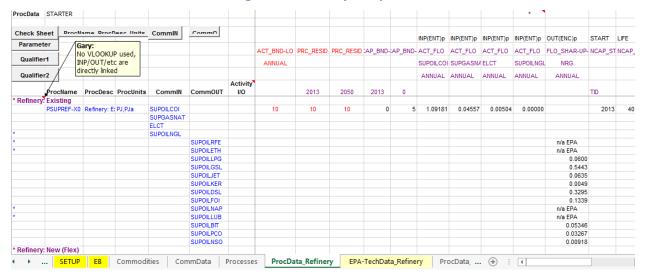

Energy Carrier	Flow Share	Market Share
INDCOAANT	1.20%	
INDCOAOBC	9.48%	
INDCOALIG	37.74%	
INDCOAORG	21.05%	
INDOILKER	0.05%	
INDOILDSL	13.62%	
INDOILFOI	0.25%	
INDGASNAT	14.53%	
IND <ent></ent>		67.19%
INDELC		32.81%

Table 9: Starter Industry Subsector Options

5.4.4 Simple Flexible Oil Refinery

The AT2-Starter_RefineryO template is setup with an existing and a new limit refineries established based upon the US9r allocation for PADD2 in terms of costs and output mix maximum shares for each product in the slate (corresponding to the OUT(ENC)p/FLO_SHAR(up)), anticipating that the user will need to adjust these for their historic/expected situation in there. The refinery is output normalized, where 1 PJ of the output slate requires 1.09181PJ crude oil, 0.04557PJ natural gas, and 0.00504PJ electricity. For the existing refinery the current installed capacity (PRC_RESID) should be updated and perhaps the first period total output, as shown in red in Figure 30.

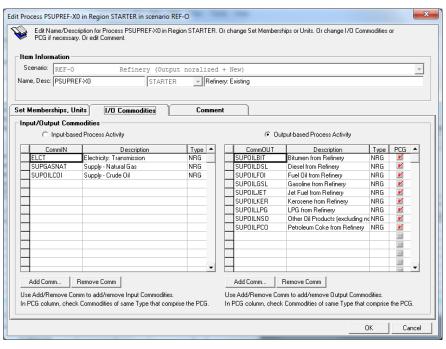

The Setup and Commodities sheet of the Refinery template link to the supply (SUP) template to get the names, descriptions, units and set membership of the commodities involved in the refinery operation.

Figure 30: Refinery Template

In ANSWER the Refinery setup with respect to the PCG (output) and SPG (input) can be seen nicely on the Edit I/O Commodities form, as seen in Figure 31.

Figure 31: Refinery PCG

5.4.4.1 Calibration of the Initial Year

To check the calibration of the refinery, that is the production slate or product mix in the first period, use the VEDA-BE Refinery Product Mix table, adjusting the FLO_SHAR in the 1st period as necessary – perhaps moving to FLO_SHAR(FX) for said period, then allowing more flexibility in the later years.

5.4.5 Residential

The structure of the Residential sector templates is very similar to those of the Commercial sector, where the list of energy service demands are defined for a set of end-use applications, as can be seen in Figure 32, with each of these applications serviced by multiple (sometimes many) devices. The energy service, building type, fuel consumed and device type are combined to form the name (and description) of each of the options. In the case of heating/cooling, the Building type is appended to the demand root so that if additional building types are added they are properly distinguished in all the device names. Figure 33 demonstrates this by listing some of the devices for Residential space heating as found in US9r. The layout of devices is similar for the other end-use applications. These various heating/cooling options need to be apportioned by the user according to the general situation in the area of study, otherwise the single most cost-effective option will dominate the service demand. The multiple vintages of a technology in the EPA MARKAL model are replaced by a single technology option by using the vintage feature in TIMES, and heat pumps are represented by a single technology in TIMES.

Figure 32: Residential End-Uses & Heating Technology Types

Building Type & End-Use Applications	Heating Technology Types
--------------------------------------	--------------------------

* B	uilding Types		* Heating Device Type	
* =	H		-F-	Furnace-
E	nergy Services RHH	Residential Heating	-H-	Heat Pump-
	RHC	Residential Cooling	-R-	Radiant-
	BHW	Residential Water Heating	-S-	Stove-
	BHB	Residential Refrigeration		
~	BHK	Residential Freezing		
	RHL	Residential Lighting		
	RHO	Residential Other Appliances		

Figure 33: Residential Heating Technologies

* Space Heating			
* Electric Radiant		* LPG Furnace	
RHHELC-R-ST	Residential Heating: Electricity Radiant-Standard	RHHOILLPG-F-ST	Residential Heating: LPG Furnace-Standard
* Electric Heat Pump		RHHOILLPG-F-IM	Residential Heating: LPG Furnace-Improved
RHHELC-HA-ST	Residential Heating: Electricity Heat Pump-Standard	RHHOILLPG-F-BE	Residential Heating: LPG Furnace-Best
RHHELC-HA-IM	Residential Heating: Electricity Heat Pump-Improved	RHHOILLPG-F-AD	Residential Heating: LPG Furnace-Advanced
RHHELC-HA-BE	Residential Heating: Electricity Heat Pump-Best	* Distillate Furnace	
RHHELC-HA-AD	Residential Heating: Electricity Heat Pump-Advanced	RHHOILFOI-F-ST	Residential Heating: Fuel Oil Furnace-Standard
* Natural Gas Furnace		RHHOILFOI-F-IM	Residential Heating: Fuel Oil Furnace-Improved
RHHGASNAT-F-ST	Residential Heating: Natural Gas Furnace-Standard	RHHOILFOI-F-BE	Residential Heating: Fuel Oil Furnace-Best
RHHGASNAT-F-IM	Residential Heating: Natural Gas Furnace-Improved	* Distillate Radiant	
RHHGASNAT-F-BE	Residential Heating: Natural Gas Furnace-Best	RHHOILFOI-R-ST	Residential Heating: Fuel Oil Radiant-Standard
RHHGASNAT-F-AD	Residential Heating: Natural Gas Furnace-Advanced	RHHOILFOI-R-IM	Residential Heating: Fuel Oil Radiant-Improved
* Natural Gas Radiant	Residential Heating. Natara Gas Famace Advanced	RHHOILFOI-R-BE	Residential Heating: Fuel Oil Radiant-Best
RHHGASNAT-R-ST	Residential Heating: Natural Gas Radiant-Standard	* Wood	
		RHHBIOPSF-S-ST	Residential Heating: Primary Solid Biofuels Stove-Standard
RHHGASNAT-R-IM	Residential Heating: Natural Gas Radiant-Improved	* Ground Source Heat	Pump
RHHGASNAT-R-BE	Residential Heating: Natural Gas Radiant-Best	RHHELC-HG-ST	Residential Heating: Electricity Ground Source Heat Pump-Standard
* Kerosene Furnace		RHHELC-HG-IM	Residential Heating: Electricity Ground Source Heat Pump-Improved
RHHOILKER-F-ST	Residential Heating: Kerosene Furnace-Standard	* Natural Gas Heat Pu	mp
RHHOILKER-F-IM	Residential Heating: Kerosene Furnace-Improved	* RHHGASNAT-H-ST	Residential Heating: Natural Gas Heat Pump-Standard
RHHOILKER-F-BE	Residential Heating: Kerosene Furnace-Best	* RHHGASNAT-H-IM	Residential Heating: Natural Gas Heat Pump-Improved

As noted above, the BY template includes an EB sheet tied to the EB workbook, both the BY and NT templates have SETUP and Commodity/Process declaration sheets. The NT SETUP tab is linked directly to the corresponding BY sheet for the commodity and device names to help ensure consistency. The final sheet (ProcData_XPRCs) defines the sector fuel and emissions tracking processes (XRSD<fuel>) that link the supply commodities to the Residential sector, and is only found in the BY sheet. If new commodities not found in the original first year energy balance are needed for future years, as discussed in Section 6, the 0 on row-5 of the BY-RSD EB sheet for said fuel should be deleted, activating the fuel and associated XRSD<fuel> process.

The Residential sector is handled the same as the rest of the EPA US9r referenced templates, in that the SETUP sheet controls what is/is not included for the sector, and the ProcData_RSD sheet links directly to their EPA_RSD counterpart via VLOOKUP, converting costs as specified on the SETUP sheet. One difference from MARKAL is that heat pumps are represented as a single device servicing both heating and cooling demands, with differing capacity factors and efficiencies. A snapshot of the Residential load sheet is shown in Figure 34. All the residential service demands are in petajoules, with the exception of lighting in billion lumens (lbn-lum).

ProcData	STARTER						•													
Check Sheet	ProcName, Pr	oc Desc, Units		CommIN	CommOUT															
Parameter									START	LIFE	INVCOST							EFF		
	-							PRC_VINT	NCAP_ST/	NCAP_TU	NCAP_CO	NCAP_CC	NCAP_CO	NCAP_CO	NCAP_CC	NCAP_CO	NCAP_CO	ACT_EFF	ACT_EFF	ACT_E
Qualifier1																		ACTGRP	ACTGRP	ACTGR
Qualifier2	1																	ANNUAL	ANNUAL	ANNUA
			ProcUni			Activi														
	ProcName	ProcDesc	ts	CommIN	CommOUT	ty I/O	Lookup	TID	TID			2015	2020	2025	2030	2035	2040		2015	2020
Space He	ating																			
Electric R	adiant																			
		Residential Heating: Electricity R	PJ,PJa	RSDELC	BHB		RSHERDV110		2015	20	4.34							1.00		
Electric H																				
	RHBELC-HA-ST	Residential Heating: Electricity H	PJ,PJa	RSDELC	BHB		RSHEHPV110		2015	15	7.61	7.84								
					RCB		RSCEHPV110													
	RHBELC-HA-IM	Residential Heating: Electricity H	PJ,PJa	RSDELC	RHB		RSHEHPV210		2015	15	10.22	10.86								
					RCB		RSCEHPV210													
	RHBELC-HA-BE	Residential Heating: Electricity H	PJ,PJa	RSDELC	RHB RCB		RSHEHPV310		2015	15	11.33		11.89							
					RHB		RSCEHPV310 BSHEHPV410		0.045	15					13.07					
	HHBELC-HA-AD	Residential Heating: Electricity H	РЈ,РЈа	RSDELC	RCB		BSCEHPV410		2015	10	12.68		13.00		13.07					
Manual C.	as Furnace				RUB		HSUEHP #410													
Natural G		Residential Heating: Natural Gas	0101	BSDGASNAT	DUD		BSHNEBV210		2015	15	5.71							0.80		
		Residential Heating: Natural Gas		RSDGASNAT			BSHNFBV310		2015	20	6.28							0.90		
		l Residential Heating: Natural Gas		BSDGASNAT			BSHNEBV410		2015	20	7.30							0.95		
		Residential Heating: Natural Gas		BSDGASNAT			BSHMEBV510		2015	20	8.56							0.00		
Natural G		The side haar he dailig. Haadara das	1 0,1 04	THOE GET ON THE			Thornwill Thore		2010		0.00							0.00		
		Residential Heating: Natural Gas	PJPJa	BSDGASNAT	BHB		BSHNBDV110	1	2015	20	7.53	7.99						0.80	0.82	2
		Residential Heating: Natural Gas		RSDGASNAT	BHB		RSHNRDV210		2015	20	9.70							0.85		
		Residential Heating: Natural Gas		RSDGASNAT	BHB		RSHNRDV310		2015	20	9.13							0.98		
Kerosene																				
	RHBOILKER-F-S	Residential Heating: Kerosene F	PJ,PJa	RSDOILKER	RHB		RSHKFRV110	1	2015	20	7.42	7.99						0.80	0.83	3
	RHBOILKER-F-IN	Residential Heating: Kerosene F	PJ,PJa	RSDOILKER			RSHKFRV210		2015	20	8.56							0.85		
		Residential Heating: Kerosene F	PJ,PJa	RSDOILKER	RHB		RSHKFRV310		2015	20	10.84							0.98		
LPG Furna																				
		Residential Heating: LPG Furnac		RSDOILLPG			RSHLFRV210		2015	20	5.71							0.80		
		Residential Heating: LPG Furnac		RSDOILLPG			RSHLFRV310		2015	20	6.28							0.90		
		Residential Heating: LPG Furnac		RSDOILLPG			RSHLFRV410		2015	20	7.30							0.95		
	RHBOILLPG-F-A	l Residential Heating: LPG Furnac	PJ,PJa	RSDOILLPG	RHB		RSHLFRV510		2015	20	8.56							0.98		
• •	ANSv2-69	92-Home SETUP	Commo	odities	Processes	Pr	ocData_RSI	D EPA	-Commo	dities	EPA-Te	chData_	RSD	DH_HEAT	г НР	HEAT	+			

Figure 34: Residential New Technology Loadsheet

Any Residential component may be eliminated by entering "*" in Col-A on the SETUP sheet. If there is a need to add a new device type, do so by copying a similar type of devices' name on SETUP then Process data blocks on the appropriate ProcData_* sheets. Most of the names are carefully built from \$references to their components, so after copying only minor adjustments need to be done to say change a fuel or technology instance. However, if adding a new technology there will be no corresponding data on the source data sheets, so the appropriate numbers will need to be provided. Also, be sure when adding an existing device not yet in the database that the device also gets added to the Calibration sheet appropriately (by copy/inserting a similar device in the same group).

Warning: be sure to adhere to the basic naming convention of the components (that is use the same approach and number of characters as for some other entry) or the ANSWER named TechFilters and VBE Sets may no long operate properly!

5.4.5.1 Calibration of the Initial Year

The Residential and Commerical sectors are very similar in terms of preparing and performing the calibration as for the most part they tend to have the same kinds energy services and devices types that meet them. See Section 5.4.2.1 for further explanation and examples.

As discussed in Section 6, the work on the Calibration sheets in each BY workbook is the starting point for the calibration process. The cycle involves running the model (for just the first period if desired) and using the VBE calibration check workbook to see how well the model is aligning with the energy balance, returning to the BY Calibration sheets to devices shares assumptions as needed.

5.4.6 Transportation

The EPA US9r database contains an extensive transportation sector database, which is provided in its entirety. Transportation demands are expressed in terms of Petajoules, vehicle miles traveled, passenger-miles and tonne-miles in US9r, converted internally in the templates to kilometers on the ProcData sheets as specified on the SETUP tab. The transportation demands, along with the types of

vehicles modelled are shown in Figure 35. As discussed below, these various competing vehicles need to be apportioned by the user according to the general situation in the area of study, otherwise the single most cost-effective option will dominate the service demand. The multiple vintages of a technology in the EPA MARKAL model are replaced by a single technology option by using the vintage feature in TIMES.

Transport [Demands by Mode	Vehicle Classes								
* Transport Services		* LDV	Vehicle Class	* Tech	nology Type					
* Light Duty		CP	Compact							
TLD	Transport: Light Duty Vehicles	FS	Fullsize	AD	Advanced					
* Heavy Duty		LS		CO	Conventional					
TAI	Transport: Air		Large SUV	FX	Flex-fuel					
TBU	Transport: Bus	MC	Minicar	HY	Hybrid					
TMD	Transport: Medium Duty Trucks	MV	Minivan		пурпа					
THS	Transport: HDV Short Haul	PU	Pickup	IM	Improved					
THL	Transport: HDV Long Haul	SS	Small SUV	PH	Plug-in					
TSH	Transport: Ship	* Heav	y Duty Truck Class	SM	SmartWay					
TRF	Transport: Rail - Freight	LH	Long haul							
TRP	Transport: Rail - Passanger	SH	Short haul	rass	anger Rail Category					
TCT	Transport: Commercial Truck	* Aviat	tion	CO	Commuter					
* Off Road	•	GA	General aviation	IC	Intercity					
TOH	Transport: Off-road	PA	Passanger	SS	Subways and Streetcars					

Figure 35: Transportation Modes & Technology Classes

As discussed above the BY template includes an EB sheet tied to the EB workbook, both the BY and NT templates have SETUP and Commodity/Process declaration sheets. The NT SETUP tab is linked directly to the corresponding BY sheet for the commodity and device names to help ensure consistency. Separate Process Data loadsheets are provided for light duty vehicles (LDV), heavy duty vehicles (HDV) and off-highway (OH) use. The final sheet (ProcData_XPRCs) defines the sector fuel and emissions tracking processes (XTRN<fuel>) that link the supply commodities to the Transportation sector, and is only found in the BY sheet. If new commodities not found in the original first year energy balance are needed for future years, as discussed in Section 6, the 0 on row-5 of the BY-TRN EB sheet for said fuel should be deleted, activating the fuel and associated XTRN<fuel> process.

The Transportation sector is handled the same as the rest of the EPA US9r referenced templates, in that the SETUP sheet controls what is/is not included for the sector, and the ProcData_TRN sheet links directly to their EPA_TRN counterpart via VLOOKUP, converting costs as specified on the SETUP sheet. A snapshot of the LDV load sheet is shown in Figure 36.

Check Sheet Inchame ProcDes	and the last		CommiN	CommOUT															
Parameter	sc, units		Commine	Commoior		START	LIFE	INVCOST	INVCOST	INVCOST	INVCOST	INVCOST	EFF_I	EFF_I	EFF_I	EFF_I	EFF_I	FIXOM	DISCRAT
						NCAP_STAR	NCAP_TU	F NCAP_COS	NCAP_COS	NCAP_COS	NCAP_COS	NCAP_COS	ACT_EFF	ACT_EFF	ACT_EFF	ACT_EFF	ACT_EFF	NCAP_FOM	NCAP_DF
Qualifier1													ACTORP	ACTORP	ACTGRP	ACTGRP	ACTORP		
Qualifier2													ANNUAL	ANNUAL	ANNUAL	ANNUAL	ANNUAL		
	ProcDesc	ProcUnits	CommiN	CommOUT	Tech Lookup	TD		2013	2020	2030	2040	2050	2013	2020	2030	2040	2050		
TECHNOLOGIES																			
Light Duty Vehicle Demand	d Technologies																		
Compact																			
	Transport: Light Duty Vehicles Minicar: Gasol			TLO	TLMCCOW/10	2015			7174.50	7363.15	7364.43	7364.43	0.2812		0.4580	0.4570	0.4570	61.5357	0.
	Transport Light Duty Vehicles Minicar: Electric			TLD	TLMCELC	2015				8208.21	7911.30	7911.30		1.0585		1.1225	1.1225	46.1518	0.1
	Transport Light Duty Vehicles Minicar, Electri			TLD	TLMCELCB	2015				3969.75	9244.20	9244.20			0.9210	0.9335	0.9335	46.1518	0.3
	Transport: Light Duty Vehicles Compact: Gas			TLD	TLCCONV10	2015				3075.59	3077.78	3077.78	0.3239			0.5423	0.5423	61.5357	0.
	Transport: Light Duty Vehicles Compact; Elec			TLD	TLCELC	2015				3985.60	3716.86	3716.86		1 1669		12368	12368	46.1518	0.2
	Transport Light Duty Vehicles Compact; Elec			TLD	TLCELCB	2015				5584.89	4926.30	4926.30			10144	10286	10286	45.1518	0.3
	Transport: Light Duty Vehicles Compact: Dies			TLD	TLCDSL10	2015				3236.74	3239.39	3239.39	0.3990		0.5791	0.5779	0.5779	61.5357	0.
	Transport: Light Duty Vehicles Compact: Nature			TLD	TLCCNG10	2015			3826.51	4058.84	4061.50	4061.50	0.3470			0.5996	0.5996	55.3821	0.3
TLDCPGASNAT-FX	Transport Light Duty Vehicles Compact Nature	Bv-km,Bv-km/a	TRNGASNAT	TLD	TLCCNGX10	2015	21	3736.15	3640.74	3068.61	3071.27	3871.27	0.3218	0.4403	0.5556	0.9544	0.5544	55.3821	0.3
TLDCPOILDSL-HY	Transport: Light Duty Vehicles Compact: Dies	By-km,By-km/a	TRNOLDSL	TLD	TLCDHEV15	2015	20	0.00	3792.98	3699.64	3682.98	3682.98		0.6194	0.6835	0.6821	0.6821	64.6125	0.
TLDCPBIOGSL-FX	Transport Light Duty Vehicles Compact, Biog	Bu-km,Bu-km/a	TRNBIOGSL TRNDLGSL	TLD	TLCETHX10	2015	21	2959.98	2871.89	3084.38	3086.15	3086.15	0.3250	0.4413	0.5493	0.5484	0.5484	61.5357	0.
TLDCPOILGSL-HY	Transport Light Duty Vehicles Compact: Gas	By-km.By-km/a	TRNOLGSL	TLD	TLCHEV10	2015	20	3867.71	3423.76	3425.24	3407.95	3407.95	0.5583	0.6087	0.7249	0.7236	0.7236	64.6125	0.1
TLDCPOILLPG-FX	Transport Light Duty Vehicles Compact LPG	Bu-km.Bu-km/a	TRNOLLPG TRNOLGSL	TLD	TLCLPGX10	2015	20	3657.22	3556.55	3783.99	3786.46	3786.46	0.3219	0.4403	0.5559	0.5547	0.5547	55.3821	0.2
TLDCPOILGSL-PH1	Transport Light Duty Vehicles Compact, Gas	Bv-km,Bv-km/a		TLD	TLCPH/VG10	2015	21	3556.61	3574.77	3784.67	3786.86	3786.86	0.8204	0.8946	1.0653	1.0634	10634	64.6125	0.2
Fullsize																			
TLDFSDLGSL-CD	Transport Light Duty Vehicles Fullsize; Gasol	By-km,By-km/a	TRNOLOSI.	TLD	TLFCONV10	2015	21	3370.39	3424.90	3830.73	3632.95	3632.95	0.3085	0.4274	0.5402	0.5397	0.5397	69.2276	0.1
	Transport Light Duty Vehicles Fullsize: Electri Transport Light Duty Vehicles Fullsize: Electri			TLD TLD	TLFELC TLFELC8	2015				4641.88	4331.65	4331.65		1.0147	1.0560	1.0709	1.0709	51.9207 51.9207	0.2

In addition, as discussed below, the vehicle type shares will need to be tailored to the country situation, where for example large cars, small cars, hybrids, etc. are all competing to provide passenger travel services. These shares are controlled by means of specifying the minimum or maximum percentage that each vehicle class (e.g., large (inefficient)) is projected to provide of the associated service demand.

Any Transportation component may be eliminated by entering "*" in Col-A on the SETUP sheet. If there is a need to add a new device type, do so by copying a similar type of vehicle's name on SETUP then Process data blocks on the appropriate ProcData_* sheets. Most of the names are carefully built from \$references to their components, so after copying only minor adjustments need to be done to say change a fuel or technology instance. However, if adding a new technology there will be no corresponding data on the source data sheets, so the appropriate numbers will need to be provided. Also, be sure when adding an existing device not yet in the database that the device also gets added to the Calibration sheet appropriately (by copy/inserting a similar device in the same group).

Warning: be sure to adhere to the basic naming convention of the components (that is use the same approach and number of characters as for some other entry) or the ANSWER named TechFilters and VBE Sets may no long operate properly!

5.4.6.1 Calibration of the Initial Year

The Transportation sector is similar to the other sectors (other than Industry) in terms of preparing and performing the calibration. Below in Figure 37 and Figure 38 the EB and Calibration sheets are shown, where the user input of the splits for the end-use services is done on the former and for the assciated devices on the latter. When entering the device splits when there is more than one competing device consuming a fuel, shares are requested for all but one of them, with the remaining share calculated to ensure the service/fuel total is respected. There are separate Calibration and loadsheets for light duty vehicles (LDVs) and the rest of the transportation demands.

Figure 37: EB Sheet for Transportation

			OILLPG	OILGSL	OILJET	OILKER	OILDSL	OILFOI	OILLUB	OILNSO	GASNAT	BIOGAS	BIOGSL	BIOJKE	BIODSL	ELC	0
						Kerosen			Lubrican	specified Oil	Natural		Biogasoli	Kerosen	Biodiesel	Electricit	All
PJ	Sector Name		LPG	Gasoline	Jet Fuel	e	Diesel	Fuel Oil	ts	Products	Gas	Biogases	ne	е	s	y	Energ
International marine bunkers	0		0	n	0	0	0	n	n	0	0	0	0	0	0	0	0
International aviation bunkers	0		0	0	3.6561	0	0	0	0	n	0	0	n	0	0	0	3.656
Transport	TBN		0.0936		0.0306	0	17,127	0	0	0	1,965	Ő	0	0	0	1.0152	
Road	0		0.0936	16,4346	0.0300	0	16.6816	0	0	0	1.965	0	0	0	0	0	35.174
Domestic aviation	0		0.0000	0.4540	0.0306	0	0.0010	0	0	ů.	0	0	0	0	0	0	0.030
Bail	Ő		ő	ů.	0.0000	Ő	0.3908	0	ů.	ů.	ň	ň	Ő	ň	ň	1.0152	1406
Pipeline transport	0		0	0	0	0	0.0000	0	0	Ő	0	0	0	0	0	0	0
Domestic navigation	Ő		ŏ	Ŭ.	ŏ	ő	0.055	Ŭ	Ŭ	0	ő	ŏ	Ő	ŏ	ŏ	ŏ	0.055
Non-specified (transport)	ŏ		ŏ	Ő	ŏ	Ő	0	Ő	Ő	ŏ	ŏ	ŏ	ŏ	Ő	Ő	ŏ	0
* Transport Services																	
Domestic aviation																	
Final Energy Consumption for Do																	
	TAI	Transport: Air	0	0	0.0306	0	0	0	0	0	0	0	0	0	0	0	0.0
Domestic navigation																	
Final Energy Consumption for Do																	
	TSH	Transport: Ship	0	0	0	0	0.055	0	0	0	0	0	0	0	0	0	0.0
Rail																	
Share by service																	
	TRF	Transport: Rail - Freight					50%										
	TRP	Transport: Rail - Passanger					50%									100%	
	Check 100%		0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	
Final Energy Consumption for Ra																	
	TRF	Transport: Rail - Freight	0					0	0								
	TRP	Transport: Rail - Passanger	0					0									
	Total		0				0.3908	0								1.0152	
	Check diff fro	m FEC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Road																	
Share by service																	
* Light Duty																	
	TLD	Transport: Light Duty Vehicles	70%	50%			50%				50%						
* Heavy Duty																	
	TBU	Transport: Bus		10%			10%				25%						
	TMD	Transport: Medium Duty Trucks	10%				10%				10%						
	THS	Transport: HDV Short Haul	10%	10%			10%				15%						
	THL	Transport: HDV Long Haul	10%				10%										
	TCT	Transport: Commercial Truck		20%			10%										
	Check 100%		100%	100%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	0%	0%	
Final Energy Consumption for Ro 'Light Duty	ad services																
	TLD	Transport: Light Duty Vehicles	0.07	8.22	-		8.34	-	-	-	0.98	-	-	-	-	-	17.6
* Heavy Duty																	
,	TBU	Transport: Bus	-	1.64	-	-	1.67	-	-	-	0.49	-	-	-	-	-	3.8
	TMD	Transport: Medium Duty Trucks	0.01	164	-	-	1.67	-	-	-	0.20	-	-	-	-	-	3.5

Figure 38: Calibration Sheet for Transportation

Selected?	TRP	Transport: Rail - Passanger	Efficiency	Capacity Factor	Share of FEC	Final energy (PJ)	Demand (bn- pass-km)	Installed Capacity (bn-pass-km)	Fuel	Fuel share
	TRPOILDSL-CM-X0	Transport: Rail - Passanger; Diesel - Commuter - Existing 0	1.015934108	1	1.00	0.1954	0.1985	0.20	OILDSL	
	TRPOILDSL-IC-X0	Transport: Rail - Passanger: Diesel - Intercity - Existing 00		1	0.00	0.0000	0.0000	0.00	OILDSL	0.88
					0.00	0.0000			ELC	0.12
	TRPELC-CM-X0	Transport: Rail - Passanger; Electricity - Commuter - Existin	1.015934108	1	0.50	0.5076	0.5157	0.52	ELC	
	TRPELC-SS-X0	Transport: Rail - Passanger; Electricity - Subways and Stree	1.83557863	1	0.50	0.5076	0.9317	0.93	ELC	
						1.2106	1.6459	1.6459		
					from EB	1.21				
					check if zero	0.0000				
Selected?	<u>TBU</u>	Transport: Bus	Efficiency	Capacity Factor	Share of FEC	Final energy (PJ)	Demand (Bv-km)	Installed Capacity (Bv-km)	Fuel	
	TBUOILDSL-X0	Transport: Bus; Diesel - Existing 00	0.055953541	1	1.00	1.6682	0.0933	0.09	OILDSL	
	TBUOILGSL-X0	Transport: Bus; Gasoline - Existing 00	0.060429824	1	1.00	1.6435	0.0993	0.10	OILGSL	
	TBUGASNAT-X0	Transport: Bus; Natural Gas - Existing 00	0.047574025	1	1.00	0.4913	0.0234	0.02	GASNAT	
						3.8029	0.2160	0.2160		
					from EB	3.80				
					check if zero	0.0000				
Selected?	TMD	Transport: Medium Duty Trucks	Efficiency	Capacity Factor	Share of FEC	Final energy (PJ)	Demand (Bv-km)	Installed Capacity (Bv-km)	Fuel	
	TMDOILGSL-X0	Transport: Medium Duty Trucks; Gasoline - Existing 00	0.095320218	1	1.00	1.6435	0.1567	0.16	OILGSL	
	TMDOILDSL-X0	Transport: Medium Duty Trucks; Diesel - Existing 00	0.097424176	1	1.00	1.6682	0.1625	0.16	OILDSL	
	TMDGASNAT-X0	Transport: Medium Duty Trucks; Natural Gas - Existing 00	0.07798367	1	1.00	0.1965	0.0153	0.02	GASNAT	
	TMDOILLPG-X0	Transport: Medium Duty Trucks; LPG - Existing 00	0.085682657	1	1.00	0.0094	0.0008	0.00	OILLPG	
						3.5175	0.3353	0.3353		
					from EB	3.52				
					check if zero	0.0000				
Selected?	THS	Transport: HDV Short Haul	Efficiency	Capacity Factor	Share of FEC	Final energy (PJ)	Demand (Bv-km)	Installed Capacity (Bv-km)	Fuel	
	THSOILGSL-X0	Transport: HDV Short Haul; Gasoline - Existing 00	0.081936407	1	1.00	1.6435	0.1347	0.13	OILGSL	
	THSOILDSL-X0	Transport: HDV Short Haul; Diesel - Existing 00	0.063102882	1	1.00	1.6682	0.1053	0.11	OILDSL	
	THSGASNAT-X0	Transport: HDV Short Haul; Natural Gas - Existing 00	0.063275756	1	1.00	0.2948	0.0187	0.02	GASNAT	1
	THSOILLPG-X0	Transport: HDV Short Haul; LPG - Existing 00	0.059628806	1	1.00	0.0094	0.0006	0.00	OILLPG	
						3.6157	0.2591	0.2591		
					from EB	3.62				
•	ANSv2-691	-Home SETUP Commodities EB	Calibrat	ion_LDV	check if zero Calibratio	n_HDV&Off-ro	oad Comm	Data Process	es Procl	Data_LD'

As discussed in Section 6, the work on the Calibration sheets in each BY workbook is the starting point for the calibration process. The cycle involves running the model (for just the first period if desired) and using the VBE calibration check workbook to see how well the model is aligning with the energy balance, returning to the BY Calibration sheets to devices shares assumptions as needed.

6 Calibration of the Base Year

The organization of the BY tempates was discussed in Section 2, including the basics of the Calibration sheet used for each sector to establish the technology mix according to the 1st year energy balance and local technologies in use today. This section provides details on the procedure to follow to calibrate the base year of the energy system as presented in TIMES, involving:

- checking that the first year resource supplies are properly reflected in the Supply workbook;
- establishing the power plant mix, and
- decomposing the energy balance for each demand sector to the service level and then establishing the existing technology mix and contribution to meeting the service demand.

For all the sector workbooks two sheets are key to the calibration process: the energy balance (EB) sheet as carried across from the EB workbook for the sector, and the Calibration sheet where the work is done to decompose the sector level balance to the devices supplying the various end-uses, or in the case of the power sector the individual plant types. On each Calibration sheet there is a text box with instructions on completing its calibration. The essence of the process is to assign the percent of final energy fuel consumption associated with each of the end-use services on the EB sheet, and then apportion that down to the device level on the Calibration sheet. As the user enters these splits, the total within each group is cross-checked to ensure a good calibration to the energy balance. But once setup the model needs to be run (for only the 1st period is fine) to see if the input splits et al provided indeed align with what is produced from the model. Troubleshooting differences between the original EB and that obtained from a model run is discussed in the next section.

To faciliate this comparison a VBE UpdateXLS workbook has been setup with tables corresponding to:

- resource supply by source and fuel type;
- power, CHP and heating plants consumption and generation by fuel type, and
- final energy consumption by sector and fuel.

These VBE dump tables, shown in Figure 39, are processed using VLOOKUP functions on the EB fuel/sector names to assemble the information on the EB Results sheet and assembled on the EB Results sheet (Figure 40), then said values are compared against the original EB (Figure 41) and the power sector details (Figure 42) to see that these are in alignment. The EB & PP_Calib Check sheets show any differences, which then need to be tracked down and resolved, as discussed in the next section.

Note: If the names/structure of the EB or the BY-PP calibration sheet are changed, the Calibration Check workbook needs to be adjusted accordingly.

	e: Calib - Final Energy Co	nsumption (by	Sec & Fu			eration (by Type)					Heat Genera	tion (by Ty
Active Unit:				Active Unit					ctive Uni			
Scenario	CommoditylPeriod	2013		Scenario	ProcessSetDesc	ProcessiPeriod	2013				ProcessIP	2013
REF-09	AGRBIOPSF	0.0018		REF-09	Biofuel-fired	EEBIOGAS-CC-X			EF-09		EHBIOPS	2
REF-09	AGRELC	0.1246		REF-09	Biofuel-fired	EEBIOGAS-EN-X	0.5		EF-09		HPBIOPS	1
REF-09	AGRGASNAT	0.0588		REF-09	Biofuel-fired	EEBIOGAS-GT->	0.5		EF-09		EHCOAAN	1.69
REF-09	AGROILDSL	3.53E-01		REF-09	Biofuel-fired	EEBIOGAS-ST-X	0.24894		EF-09		HPELC-BI	0.499
REF-09	AGROILGSL	3.62E-02		REF-09	Biofuel-fired	EEBIOMSW-ST-	1		EF-09	Electricity	HPELC-H	0.5
REF-09	COMBIOPSF	3.36E-01		REF-09	Biofuel-fired	EEBIOPSF-IG-X0	5.683107	R	EF-09	Gas fired	EHGASNA	1
REF-09	COMCOAANT	1.30E-02		REF-09	Biomass fired CHF	EHBIOPSF-ST-X	0.769231	B	EF-09	Gas fired	EHGASNA	1
REF-09	COMCOALIG	0.0053		REF-09	Coal fired CHPs	EHCOAANT-ST->	1.3	B	EF-09	Gas fired	HPGASN/	0.5
REF-09	COMELC	4.3256		REF-09	Coal-fired	EECOALIG-IG-X0	3	R	EF-09	Total		8,189
REF-09	COMGASNAT	2.8712		REF-09	Coal-fired	EECOALIG-ST-X	4.5					
REF-09	COMLTH	1.269		REF-09	Coal-fired	EECOAOBC-ST-	1.5					
REF-09	COMOILFOI	0.1794		REF-09	Coal-fired	EECOASBC-ST->	1.5	T.	able Nan	ne: Calib - I	HPL Fuel Co	nsumption
REF-09	COMOILLPG	0.0134		REF-09	Gas fired CHPs	EHGASNAT-CC->	1.428571	A	ctive Uni	t PJ		
REF-09	COMRNWGED	0.312		REF-09	Gas fired CHPs	EHGASNAT-EN->	0.909091	S	cenario	Process	Commodit	2013
REF-09	COMRNWSOL	2.34E-02		REF-09	Gas-fired	EEGASNAT-CC->	3	B	EF-09	HPBIOPS	PWRBIOF	0.99
REF-09	INDBIOPSE	9.00E-03		REF-09	Gas-fired	EEGASNAT-CT->	3.3552	B	EF-09	HPELC-B	PWRELC	0.52894
REF-09	INDCOAANT	0.219		REF-09	Hvdro	EERNWHYD-DM	1.5	B	EF-09	HPELC-H	PWRELC	0.19
REF-09	INDCOALIG	6.9236		REF-09	Hydro	EERNWHYD-RR-	0.5	B	EF-09	HPGASN	PWRGAS	0.5
REF-09	INDCOAOBC	1.76		REF-09	Nuclear	EENUCLER-LWF	1					
REF-09	INDCOAORG	4.258		BEF-09	Other Renewables	EERNWGEO-ST	0.5					
REF-09	INDELC	14.1582		REF-09	Other Renewables		1	T.	able Nan	ne: Calib - I	CHP Fuel Co	onsumptio
REF-09	INDGASNAT	2,9157		REF-09	Other Renewables		0.5		ctive Uni			
REF-09	INDOILDSL	2.49E+00		REF-09	Other Renewables		1				Commodit	2013
REF-09	INDOILFOI	5.30E-02		REF-09	Total		35.44414		EF-09		PWRBIOR	4
REF-09	INDOILGSL	3.75E-01							EF-09		PWRCOA	5
REF-09	INDOILKER	9.30E-03									PWRGAS	4
REF-09	RSDBIOPSF	19.7987							EF-09		PWRGAS	5.222
REF-09	RSDCOALIG	0.051							21 00		T MINUNO	0.222
REF-09	RSDELC	13.0463										
REF-09	RSDGASNAT	27.7172										
REF-09	RSDLTH	6.10E+00										
REF-09	RSDOILKER	8.60E-03										
REF-03	RSDOILLPG	0.639										
REF-03	RSDRNWSOL	0.0233										
REF-03	TRNELC	1.0152										
REF-09	TRNGASNAT	1.965										
REF-09	TRNOLDSL	17,1274										
REF-09	TRNOILDSL	164E+01										
REF-09	TRNOILGEL	3.06E-02										
HEF-09 BEF-09	TRNULJET	9.36E-02										
5E E -1 19			EB	BY-PP	VBE tables	EB results	(+)					

Figure 39: Calibration VBE UpdateXLS Dump Tables

Figure 40: Calibration Results EB Table

EB constructed from model resul	ts											
Country (Region) Name	STARTER	BIOMSW	BIOPSF	BIOGAS	BIOGSL	BIOJKE	BIODSL	BIOCHA	NUCLER	RNWHYD	RNWGEO	RNWSOL
PJ	Sector Name	Municipal Waste	Primary Solid Biofuels	Biogases			Biodiesels					
Production		5.56	47.86	4.85						2.00	1.87	1.0
mports									2.94			
Exports		-	-	-	-					-	-	
nternational marine bunkers		-	-	-	-					-	-	
nternational aviation bunkers	_											
tock changes		-	-		-							
otal primary energy supply		5.56	47.86	4.85	-				- 2.94	2.00	1.87	1.
ransfers		-								-		
tatistical differences		0.000		0.000	-				- 0.000		-0.000	
ransformation Processes and Losses		-5.56		-4.85	-				2.94		-1.56	-1.0
Main activity producer electricity plants	PWR	-5.56	-22.72	-4.85					-2.94	-2.00	-1.56	-1.0
District CHP plants	PWR		-4.00									
District heat only plants	PWR		-0.99									
Losses (from pipelines and transmission)												
inal consumption		-	20.15		-					-	0.31	0.0
Industry	IND	-	0.01		-						-	
Transport	TRN	-		-	-					-	-	
Other		-		-	-					-	0.31	0.
Residential	RSD	-	10.00		-					-	-	0.
Commercial	COM	-	0.34		-					-	0.31	0.
Agriculture	AGR	-	0.00		-					-	-	
Fishing	AGR											
Non-specified (other)												
EB_Check PP_calib_check EB	BY-PP VBE	tables EB_	results (9		÷ .						

Differences between EB a	ind model resu												
ountry (Region) Nan	nSTARTER												
		OILDSL	OILFOI	OILNAP	OILLUB	OILBIT	OILPCO	OILNSO	GASNAT	BIOIWA	BIOMSW	BIOPSF	BIOGAS
PJ	Sector Name	Diesel	Fuel Oil	Naphtha	Lubricants	Bitumen	Petroleum Coke	Other Oil Products (excluding non- energy uses)	Natural Gas	Industrial Waste	Municipal Waste	Primary Solid Biofuels	Biogases
Production		-	-	-	-	-	-		0.00	-	-		0.00
Imports		-			-	-			-	-	-		-
Exports		-	-	-	-	-	-	•	· -	-	-	· -	-
International marine bunkers		-	-	-	-	-	-	-	-	-	-		-
International aviation bunkers		-	-	-	-	-	-		· -	-	-		-
Stock changes		-	-	-	-	-	-		· -				-
Total primary energy supply		-	-	-	-	-			. 0.00	-	-		0.00
Transfers		-	-	-	-	-	-	-		-		• •	-
Statistical differences		0.000	-0.000	-	-	-			01000		-0.000		-0.000
Transformation Processes and L		-	-	-					0100		-0.00		-0.00
Main activity producer electric		-	-	-	-	-	-		-0.00	-	-0.00		-0.00
District CHP plants	PWR	-	-	-	-	-	-	÷	-0.00	-	-	-0.00	-
District heat only plants	PWR	-	-	-	-	-	-		0.00	-	-	0.00	-
Losses (from pipelines and tra	nsmission)	-		-	-	-			-	-	-		-
Final consumption		-0.00	0.00		-	-	-		0.00	-	-	0.00	-
Industry	IND	0.00	0.00	-	-	-	-	•	0.00	-	-	0.00	-
Transport	TRN	-0.00	-	-	-	-	-		0.00	-	-		-
Other		-		-	-	-			0.00	-	-		
Residential	RSD	-			-	-			0.00	-	-	· -	
Commercial	COM	-			-	-	-		0.00	-	-	-	-
Agriculture	AGR	-		-	-	-	-		-	-	-	-	-
Fishing	AGR	-		-	-	-	-			-	-	-	-
Non-specified (other)		-	-	-	-	-	-		-		-		-
EB_Check	P_calib_check	EB BY	-PP V	BE_tables	EB_res	sults	(\pm)	E 🔳					

Figure 41: Calibration EB Comparison Table

Figure 42: Calibration PP Comparison Table

octed	Checking Calibration of power and heat generation	Fuel	F	uel consumptio	on	Ele	ctricity Produc	ced
	2				DIFF (check	Est/known elc		DIFF (chec
			From BY-PP	From Results	if 0)	prod	From Results	if 0)
Electricity Only Po	wer Plants		PJ			PJ		
* Hydro								
EERNWHYD-DM-X0	Hydro (Dam) (Existing)	PWRRNWHYD	1.5	1.5	0.0	1.5	1.5	5
EERNWHYD-RR-X0	Hydro (Run-of-River) (Existing)	PWRRNWHYD	0.5	0.5	0.0	0.5	0.5	5
EERNWHYD-PS-X0	Hydro (Pumped Storage) (Existing)	PWRRNWHYD						
		PWRELC						
	Total		2			2		
* Gas								
EEGASNAT-CC-X0	Natural Gas - Combined cycle (Existing)	PWRGASNAT	6.67	6.7	0.0	3	3.0)
EEGASNAT-CT-X0	Natural Gas - Combustion turbine (Existing)	PWRGASNAT	11.98	12.0	0.0	3.3552	3.4	ł
	Total		18.65			6.3552		
* Coal								
EECOAOBC-ST-X0	Bituminous (Brown Coal) - Steam turbine (Existing)	PWRCOAOBC	4.59	4.6	0.0	1.5	1.5	
EECOASBC-ST-X0	Sub-Bituminous Coal - Steam turbine (Existing)	PWRCOASBC	4.5	4.5	0.0	1.5	1.5	
EECOALIG-ST-X0	Lignite - Steam turbine (Existing)	PWRCOALIG	13.64	13.6	0.0	4.5	4.5	
EECOALIG-IG-X0	Lignite - Integrated Gasif. (Existing) Combined cycle	PWRCOALIG	8.57	8.6	0.0	3	3.0	(
	Total		31.3			10.5		
* Nuclear								
EENUCLER-LWR-X0	Nuclear - LWR (Existing)	PWRNUCLER	2.94	2.9	0.0	1	1.0	J

6.1 Common Reasons and Remedies for Calibration Issues

Carefully checking all EB and Calibration sheets before running the model will minimize the chances of mis-calibration of initial year. Before checking the BY template calibration make sure that all the dependent templates are linked properly and have been updated (opened and saved) to ensure all children are "younger" than their parents.

First, make sure that "Check if 100%", and "Check diff from FEC" yield correspondingly either 100% or 0 on sector "EB" sheets. If this is not the case, then the splits entered in the "split by end-use" section of each Calibration sheet are incorrect and need to be adjusted to ensure they sum to 100% or align with

the FEC from the EB. The only exception from the "Check if 100%" rule is getting 0% instead of 100% for those energy commodities that are not consumed in corresponding sector at all.

Afterwards the "Calibration" sheet needs to be checked to ensure and make sure that the sum of "Share of FEC" for all technologies consuming the same fuel within the same end-use commodity is equal to 1. Also make sure that fuel consumption is not assigned to a process which has "*" in column A. Then, carefully look at the "Check if 0" cells to make sure that all values are equal to zero. If one is not, and if the checks above are all correct, the most likely reason for mis-calibration is that some fuel has been assigned to this end use in the EB sheet "split by end-use" section, but the list of technologies in "calibration" sheet" doesn't have a technology consuming this fuel.

For example, you may have geothermal energy use in residential water heating category in your model, but the current TIMES-Starter model does not have a geothermal-consuming technology in its list of available technologies for water heating, so the EB check will fail. The procedure for adding a new device is discussed in Section 14. In this case the corresponding technology needs to be added or the EB adjusted.

A similar case may occur during calibration of power sector (i.e. your EB has a plant consuming some fuel which is not listed in the TIMES-Starter technology list). But in this case you are notified that you are missing the plant using a specific fuel by the zero value in "from Calibration" section in EB sheet, whereas the "From Balance" section does have a value assigned for that fuel and power plant type. This will also result in non-zero values in the "Difference (check if zero)" section. Alternatively, these non-zero values may be an indication that fuel consumption and/or generation values on Calibration sheet have not been split correctly between different power plants. In this case please carefully check the Calibration sheet again.

Despite the care taken when filling the BY templates, it is not an unusual situation that the model results do not perfectly calibrate after the first runs of the model. As discussed above, use the CalibrationCheck VBE UpdateXLS workbook to examine which sectors and fuels are off. Always start checking the calibration with the demand sectors, moving backward through the RES, because calibration of power and supply sectors will not be possible until the demand sectors are all properly calibrated.

In all sectors, some common oversights or pitfalls to avoid include making sure that:

- as noted above, all child templates are younger than their parents;
- the calibration checks listed above have been performed and are correct;
- the values in the template align with those one sees in ANSWER, that is that the latest version of the template is indeed the one currently in the database;
- there is no UC in the current run that affects the end-use or power plant technologies in the BY, and
- only the scenarios relevant for the calibration are loaded in the Run form, that they are in the correct order, and that nothing overrides the 1st year values.

In addition to these general reminders, when considering the possible reasons for mis-calibration in the different sectors keep in mind that it may be the case that while focusing on a particular technology the mis-calibration may be due to something wrong with another technology in the same sector. The

sections that follow discuss what may be the cause of an imbalance together with suggestions for how to go about determining the reasons and correcting them.

6.1.1 Mis-calibration in demand sectors

If mis-calibration is observed in the demand sectors, some possible reasons are noted below.

- Incorrect parameters have been used for one or more of the end-use technologies which can be either due to incorrect formulas in calibration, or the mismatch of parameter values in templates and the model scenarios. Try to figure out those technology (ies) that are causing miscalibration. To do so, use ANSWER-TIMES and/or VEDABE and check all technologies consuming the affected fuel in the affected sector. To find which technology is causing the mis-calibration compare the final energy consumption values from model results with the "Final Energy" values in sectoral "calibration" sheets. They should be the same. After locating the technology responsible for mis-calibration do the following:
 - Carefully check the formulas for the affected technology in the calibration sheet and make sure that the values that are calculated there are those that are read by "ProcData" sheets. If you haven't made any changes to EB calibration and ProcData sheets, this generally shouldn't be the cause. Check separately bi-fuel or bi-enduse technologies, because the formulas for their calibration differ from formulas used for "standard" technologies. After finding the error – correct it.
 - Compare the values of parameters for the affected technology with those that are in the corresponding ANSWER-TIMES scenario, by selecting this scenario in ANSWER-TIMES (locating it in right hand upper window of ANSWER-TIMES console) and browsing the values for that technology. Make sure that the last version of template was read in the model. If values differ reimport the Scenario. Also make sure that no other scenario changes the value of parameters and that if there is a scenario that changes the values it is not used in the current run overriding the BY-scenario of that sector.
- Make sure to have the correct end-use demand specified for the 1st period as obtained from the calibration workbook reflected in the Demand workbook and ANSWER.
- If the affected commodity is electricity or heat, the reason for mis-calibration may be due to incorrect COM_FRs. Check that the latest COM_FRs in the model database align with what is in the template and ANSWER.
- Dual fuel or service devices fixed shares need to be adjusted.
- Mis-calibration of end-use technologies can be also due to mis-calibration of upstream RES, i.e. power system and supply system (i.e. not enough fuel is coming from supply sector), discussed below.

6.1.2 Mis-calibration in power sector

The list bellow discusses the possible reasons for mis-calibration in power sector and the ways to remedy them.

• Make sure that there is no base year bound on the plant in PP-data affecting the behavior of the plant.

- Make sure that the latest year timeslices (G_YRFRs) are in the model database.
- Dual fuel plants with fixed ratios for the shares are not in the correct proportions, and need to be adjusted.
- CHP electricity to heat ratios are not in the correct proportions, and need to be adjusted.
- Mis-calibration of power plants may be due to mis-calibration of demand sectors (which should be corrected first) or the supply system including grids, which is discussed below.

6.1.3 Mis-calibration of supply system

If mis-calibration is due to the supply system the most likely reason will be the bounds on supply technologies, which come from the EB for the first period. For grids they are "built" (at no cost) according to the EB levels and a user provided utilization factor. Please check all the bounds on the supply and grid technologies in templates and in the model database. Also make sure that there is no scenario overriding the values.

You need to also make sure that there is a supply option for all energy carriers active in the energy balance in the initial period. An indication that there is none, or that the supply is not enough, is that the ZZBCKNRG backstop process enters the model results in the first period. To handle this type of miscalibration you need to add the supply technology or change/remove the bounds.

7 Managing Scenarios in ANSWER and Submitting a Model Run

The ANSWERv6-TIMES Getting Started & User Manuals provide detailed documentation on all aspects of working with ANSWER-TIMES. Here brief guidelines for managing the Starter model via ANSWER-TIMES are presented.

7.1 Handling Updates

Changes are part of the game and when new versions of the various components of the TIMES modeling platform are announced by the developers, or an update to the US9r database is released, the user should move to apply these updates to their system. Before doing so it is always advisable to back your all model files!

When new versions of GAMS, ANSWER and/or VBE are released the update procedures (or in the case of GAMS, new distribution) should be followed and the system updated. In most all cases there will be no impact on your model directly. The one exception is where there is an update of the TIMES GAMS code (in the GAMS_SrcTI folder). After introducing the update it is recommended that the standard Template.GEN file be augmented to include the *GG* block of lines below, if not found in the file. These switches adjust the handling of aspects of the objective function and aspects of the reporting (see the TIMES documentation) that best suit that TIMES-Starter model.

```
*GG* Add the LevelizedCost/Cost_NPV switches

$ SET ANNCOST LEV

$ SET OBJ AUTO

$ SET OBLONG YES

$ SET MID_YEAR YES

$ SET RPT_OPT NCAP.1 -1
```

When a new release of the USEPA US9r technology database¹² is released, ETSAP will update the TIMES-Starter model templates and make new templates available to all users. Those with existing models assembled from TIMES-Starter will only need to consider US9r updates to the SUP and NT templates in terms of introduction and changes in international energy prices and new technology characterizations. To this end, USEPA will provide a fairly detailed list of any changes made including identifying any new technologies added. The TIMES-Starter version of these changes should be able to be introduced into your model directly by simply copying the version distributed over that being used in your templates model to adopt any updates. If EPA has added new technologies then your NT templates will need to be manually updated carefully by copying the SETUP/declaration/data sheets from the new TIMES-Starter into your templates after moving in the new EPA sheet.

In terms of managing your own templates, the approach recommended is to copy and rename your ANSWER_Databases\TIMES-Starter(country)_vXX folder to a new version, perhaps also renaming the MDB in said new folder. This will ensure that all the scenario/template mappings for the ANSWER ImportXLS operation remain intact and correct, as discussed in the next section. Note that the Calibration and AnalyticsXLS result handling workbooks are also retained in this folder and one may want to increment their version numbers with that of the new folder.

7.2 Aligning Templates with Scenarios

As presented in the previous sections, there are a number of ANSWER-TIMES "Smart" Excel workbooks that accompany this TIMES-Starter database. The full set of templates comprise a Starter model, and consist of three types of templates:

- AT_ "Smart" v1 templates where either commodity groups, IRE processes, or user constraints are assembled, or single parameter values set;
- AT2_"Smart" v2 falling into three categories, Demand projection workbooks, Existing and New technologies, and
- S_ scenario workbooks which in some cases just carry out calculations or with a VBE ExportXLS table to grab Reference scenario results any apply policy targets, for example emissions, or power sector generation, or final energy consumption to evaluate emission reduction levels, renewable portfolio standards, or energy efficiency improvement. [Note that in some cases the S_scenario is easier to simply setup in ANSWER without an associated workbook, e.g., to test a higher price for nuclear power plants.]

¹² Note that to date there have not been any updates to the US9r database since the development of the TIMES-Starter model, so it is possible that these instructions may change somewhat after the first updated expected in October 2016.

The templates comprising the TIMES-Starter (that is EB, SUP, all BY/NT<sect>, Demand and UC<sect>) have been discussed in the previous sections or are elaborated in the sections that follow. Each of the templates has an associated Scenario in ANSWER into which it is to be loaded (at times more than one template may be in a scenario) as discussed below. The Scenario/Template alignment is shown in Figure 43. All the templates are kept in the same folder as the ANSWER database to facilitate version control. When looking to freeze a current model instance, the entire folder can be copied, perhaps appending the date. This enables the ANSWER import templates "Same Folder" option, discussed in the next section, to be employed.

All the templates comprising the TIMES-Starter model have a Country field on the SETUP sheet which links to the associated EB workbook (which will enable the TIMES-Starter to accommodate multi-region models).

	Starter Model Templates & Scenar	os
Name	Description	Reference Scenarios
BASE	BASE scenario	Globals/Timeslices – manually entered from EB
BOUNDLO	Impose lower bounds on operation of selected existin	REF_BOUNDLO
BOUNDLO-RED	Reduced lower bounds on operation of selected exis	REF_BOUNDLO-RED
BY-AGR	BY Agriculture	AT2_Starter_BY-AGR
BY-COM	BY commercial	AT2_Starter_BY-COM
BY-IND	BY-Industry (dummy)	AT2_Starter_BY-IND
BY-PP	BY Power Sector	AT2_Starter_BY-PP
BY-RSD	BY residential	AT2_Starter_BY-RSD
BY-TRN	BY Transport	AT2_Starter_BY-TRN AT2_Starter_Demand-REF
DEMAND-REF	Demand Projections REF	AT2_Starter_NT-AGR
NT-AGR	New Agriculture Devices	AT2_Statter_NT-COM
NT-COM	New Commercial Devices	AT2_Starter_NT-PP
B NT-PP	New Power Plants	AT2_Starter_NT-FF
NT-RSD	New Residential Devices	AT2_Starter_NT-RSD
NT-TRN	New Transport Vehicle	S CO2-20
S_CO2LIM20	•	S_CO2-30
S CO2LIM30	· · · · · · · · · · · · · · · · · · ·	S CO2-40
S_CO2LIM30	Limit on CO2 Emissions (15% in 2020 to 40% in 2050)	-
S CO2TAX	CO2 Tax	S_CO2TAX
S GHGLIM20	Limit on CO2EQ Emissions (10% in 2020 to 20% in	Scen_GHG-20
S LIMFEC	Limit on Final Energy Consumption (15% in 2030)	Scen_LIMFEC
S LIMFELC	Limit Final Electrcity Consumption	Scen_LIMFELC
S RPS	Renewable Electricity Share	Scen_RPS
B SUP	Supply	AT_Starter_Supply
TECH-BOUND	Limits on capacity of new technologies	ANSWER scenario (no XLS)
UC-COM	Reference Guidance Constraints for COM	AT_UC-COM
UC-COM50	Loosened Guidance Constraints for COM - 50%	AT_UC-COM-50
DC-COM90	Loosened Guidance Constraints for COM	AT_UC-COM-90
🗎 UC-RSD	Reference Guidance Constraints for RSD	AT_UC-RSD
UC-RSD50	Loosened Hi EFF Guidance Constraints for RSD	AT_UC-RSD-50
UC-RSD90	Loosened Hi EFF Guidance Constraints for RSD	AT_UC-RSD-90
UC-TRN	Reference Guidance Constraints for TRN	AT_UC-TRN
UC-TRN50		AT_UC-TRN-50
UC-TRN90	Loosened Hi EFF Guidance Constraints for TRN	AT_UC-TRN-90
SIND-UC	Industry Fuel & Service Shares (pending)	pending
SIXNT-IND	New Industrial Processes (pending)	pending
ZZDMY	Backstops ZZDMY for DEM/NRG/ELC	AT_Starter_ZZDMY

Figure 43: Scenario/Templates Alignment

7.3 Importing Templates into ANSWER

The ANSWER File/Import/Model Data from Excel option [Ctrl-I] can be used to bring the templates into their associated Scenario. An example for New Power Plants is shown in Figure 44. Some particular things to note in terms of the switches on the Import template include:

- Pay careful attention to the Target Scenario to make sure you're loading into the correct scenario;
- The list of FileNames to be imported (one file for each other than Industry and Demands at this time) indicates when the associated template(s) was imported and whether said template is newer (later) or already in the database (earlier), where only the former will be imported, unless the "Only Modified/Added" Option is unchecked;
- For all scenarios (other the BASE, which is handled manually) the "Delete Before Importing" option should be employed to "clean out" the existing information in the scenario prior to importing, and
- For those scenarios consisting of more than one template, the scenario data from templates not being updated may or may not be consistent with the updated data. The "Before Import Delete Results" switch is a reminder that depending upon the nature of the changes made, the user should decide whether they want to dump all associated data, or not, when importing. Thus the safe thing to do is to import (force if necessary) all the templates associated with a scenario. If importing more than one template into a single scenario and only one of them has been changed, the Import only Modified or Added Excel Files must be UNCHECKED so that the "Earlier" template(s) will also be re-imported as part of the scenario.

Note the checked Check Dependency Information and specification of the workbook with the dependency table, as shown in Table 2 and discussed in Section 2. Should any Child which is older than its Parent(s) be reported in the log, it is recommended that these be opened and resaved prior to importing any such potentially out of synch template.

Figure 44: ANSWER Template Import

Target Scenario				
Scenario: <mark>SUP</mark>	▼ Date	of Last Import: 2016/01/05 1	0:38:16	
🔲 Before Import, Delete On	line Results involving Target	Scenario		
Excel Files to be Imported	I			
Dependency XLS: TIMES-	Starter_Dependancy Table>	dsx	Browse	_
Che	ck Dependency XLS Informa	tion		Add
FileName		Date Modified	Status	Remo
AT_Starter_SUP.xlsm		2016/01/04 16:51:44	Earlier	Remov
				Up
				Dn
		AnswerTIMES\s\Answer Data	hases\TIMES-Sta	Regio
Excel Files in Same Fold	er as Current Database	AnswerTIMES∨6\Answer_Datal	pases\TIMES-Sta	Regio
Excel Files in Same Fold	er as Current Database CV	AnswerTIMES∨6\Answer_Datal	pases\TIMES-Sta	Regio
		AnswerTIMES∨6\Answer_Datal	pases\TIMES-Sta	Regio
Options	dded Excel Files	AnswerTIMESv6\Answer_Datal	pases\TIMES-Sta	rter Details
Options ✓ Import only Modified or A ✓ Strong Checking of TS a	dded Excel Files	AnswerTIMESv6\Answer_Datal		Details. Details
Options ✓ Import only Modified or A ✓ Strong Checking of TS at C Merge/Overwrite informa	dded Excel Files nd TID Data Parameters tion in the Target Scenario wi		d	Details.
Options ✓ Import only Modified or A ✓ Strong Checking of TS ar C Merge/Overwrite informa C Before Import, Delete Pe	dded Excel Files nd TID Data Parameters tion in the Target Scenario wi rameter information in the Ta	th that on Sheets being Importe	d Sheets	Details Details Details Details Details
Options ✓ Import only Modified or A ✓ Strong Checking of TS at C Merge/Overwrite informa C Before Import, Delete Pa G Before Import, Delete All	dded Excel Files nd TID Data Parameters tion in the Target Scenario wi rameter information in the Ta Information in the Target Sce	ith that on Sheets being Importe rget Scenario for Items on Data nario for Region(s) being Impo	d Sheets	Details Details Details Details Details
Options ✓ Import only Modified or A ✓ Strong Checking of TS ar C Merge/Overwrite informa C Before Import, Delete Pe	dded Excel Files nd TID Data Parameters tion in the Target Scenario wi rameter information in the Ta Information in the Target Sce	ith that on Sheets being Importe rget Scenario for Items on Data nario for Region(s) being Impo	d Sheets	Details Details Details Details Details
Options ✓ Import only Modified or A ✓ Strong Checking of TS at C Merge/Overwrite informa C Before Import, Delete Pa G Before Import, Delete All	dded Excel Files nd TID Data Parameters tion in the Target Scenario wi rameter information in the Ta Information in the Target Sce nether to Import for each Exc	ith that on Sheets being Importe rget Scenario for Items on Data nario for Region(s) being Impor el File that has errors	d Sheets	Details

Note that as the model evolves if may be desirable to have fewer individual scenarios. To this end, combining all the BY-<sector> base scenarios into BY-REF and all the NT-<sector> into a single NT-TCH may be worth considering. Having said this, one advantage of keeping the sectors in their own templates is to facilitate team model development where several individuals are building the model so that changes can be made along sector lines and introduced selectively as appropriate.

7.4 Submitting a Model Run

With the templates imported into ANSWER they may be assembled into model runs by providing the list of scenarios to be included in a run, as shown in Figure 45 for the current Reference scenario. When assembling the scenario list it is important to keep in mind that:

- The order of the scenarios is important, as GAMS processes them in the order presented;
- Thus the TIMES code only "sees" the last value submitted, and any repeated parameter values (e.g., bounds) will overwrite the earlier values;
- For the Starter model it is important to have the Supply scenario appear before any of the sector scenarios, since the supply commodities (SUP<root><nrg>) are declared in it, and
- In general, the Run check box switches active below will work just fine.

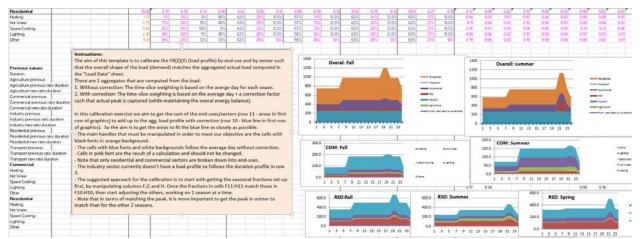
Figure 45	5: ANSWER	Run Su	bmission
-----------	------------------	---------------	----------

				_				
dodel Run D							1	
Name:	REF-10						Ch	ange Run
Description:	Reference	(with 2013 calib	ated)					
Comment	Full model							
								-
/lodel Variant	Specify M	odel Variant	Standard TIMES					
	Specify Mi	lestone Years						
cenarios com	prising this r	run:						
Name		Description				Modified		
BASE		BASE scenari	0			2015/12/14 09:45		
🗎 SUP		Supply				2015/12/14 16:07		
BY-PP		BY Power Sec				2015/12/14 11:31		
BY-AGR		BY Agriculture				2015/12/14 15:45		Add
BY-COM		BY commercia				2015/12/14 15:45	-	
BY-RSD		BY residential				2015/12/14 15:45		Remove
BY-IND		BY-Industry - o	iummy			2015/12/14 11:30		
BY-TRN		BY Transport				2015/12/14 15:46		Up
DEMAND-	REF	Demand Proje				2015/12/14 11:37		
NT-AGR		New Agricultu				2015/12/04 13:14		Dn
NT-RSD		New Resident				2015/12/09 17:49		
NT-COM		New Commer				2015/12/13 18:16		Regions
NT-PP		New Power Pl				2015/12/13 14:21	-	
NT-TRN		New Transpo		0014		2015/12/13 17:37		
UC-COM			idance Constraints f			2015/12/08 17:31		
■ UC-RSD ZZDMY			idance Constraints f DMY for DEM/NRG/			2015/12/08 17:31 2015/12/15 10:53		
GAMS Basis	Bestart Fi							
Solve from :	scratch (◯ Solve from d	efault Basis Restart	File O	Solve f	rom user-specified B	asis P	lestart File
AMS Basis Re	start File:							Modify
GAMS Basis				_				
No Basis St	_	Default Basis	; Save File	C	User-sp	pecified Basis Save	File	N. 17
GAMS Basis S	save File:							Modify
^o rogress —								
Edit GAMS C	ontrol File	□ Ge	nerate Files, Do Not	tRun	v	Create Results For In	nport i	nto ANSWEF
		🔽 Re	generate Base DD F	File		Suppress Pure Zero	Time	Series Resul
		🔽 Re	generate Non-Base	DDS Files		Import Results Autor	natical	lу
		🔽 Re	generate Rule-base	ed DDSs		Automatic Repair & (Compa	act after Impo

Once the OK button is hit:

- the model data will be assembled by ANSWER in the GAMS run folder;
- a Windows Command Prompt window will open and the model run undertaken, and
- the TIMES results are "dumped" for ANSWER (if requested) are imported (if Import Results Automatically selected).

As the run finishes up TIMES will also produce the results files needed for VBE, see Section 0.


8 Adjusting the Load Duration Curve

An important aspect of defining the electric sector is creating the annual timeslices for the model that match the base year load duration curve. The TIMES-Starter is setup with twelve divisions of the year corresponding to four seasons (summer, fall, winter and spring) and three times of the day (day, night

and peak) that apportion the load curve adequately for long-term planning purposes. While the user is free to change the number of divisions this needs to be done carefully and is not described here. We suggest that only very experienced modelers attempt to do so without expert guidance.

The number of months and hours of the day corresponding to each timeslice are defined on the Load data tab of the Loadcalibration workbook by entering the start and end day for each season. Based on the load duration curve, which consists of 8760 hourly electricity load values the base year (or most recent year available), the user must iterate on the load fractions for each timeslice and sector to get a reasonable approximation of the associated aggregate load curve that will be used by the model.

The timeslice information generated in the LoadCalibration workbook consists of the year breakdown (G_YRFRs) and the demand timing fractions (COM_FRs). This timeslice information is linked to the EB_Starter workbook, and then cascades into each of the sector workbooks. The timeslice information – particularly the period definitions, need to be taken into consideration when assigning the demand timing fractions for each end-use service with timing requirements (e.g., heating, cooling, lighting in particular).

Figure 46: Load Calibration Worksheet

9 Forecasting Demands

A TIMES model solves to meet the projected future demand for energy services for each and every enduse service. Thus the demand projection is perhaps the first most important aspect of establishing a TIMES model. The Demand template has four (4) types of worksheets, each of which are discussed in this section.

- Base year calibration data;
- Demand drivers;
- Demand projection for each sector, and
- The ANSWER-TIMES loadsheets with the commodities (end-use service demand definitions) and projection (end-use service levels).

While there are various sophistications in terms of approaches to forecasting the energy service demands, including linking to macro-economic models¹³, a rather straightforward yet reasonable and transparent approach is employed for the TIMES-Starter. The demand projections are seeded by the initial period energy service demand, as determined by the calibration process. Figure 47 shows that these BY values are coming from the BY templates, and Figure 48 shows the current levels as collected on the base year calibration data tab. The <sect> Demand tabs use the various demand drivers and sector-based elasticities to project future energy demands for each of the model demands as shown in Figure 49.

Edit Links				2 X
Source	Туре	Update	Status	Update Values
AT2_Starter_BY-AGR.x	Worksheet	А	Unknown	
AT2_Starter_BY-COM	Worksheet	А	Unknown	Cha <u>ng</u> e Source
AT2_Starter_BY-IND.xl	Worksheet	Α	Unknown	
AT2_Starter_BY-RSD.x	Worksheet	А	Unknown	Open Source
AT2_Starter_BY-TRN.x	Worksheet	Α	Unknown	Break Link
EB_Starter(2013).xlsm	Worksheet	А	Unknown	<u>Break Link</u>
•		11	4	<u>C</u> heck Status
Location: C:\AnswerTIN	IESv6\Answer_I	Databases	\TIMES-Starter(v10)	
Item:				
Update: 🧿 <u>A</u> utomatio	🔘 Manual			
Startup Prompt				Close

Figure 4	7:	Demand	Templa	ate De	pendencies
		Dernanta			

For the Industry subsectors, two approaches are available. One uses subsector-based production growth indices, as shown in Figure 49, and the other uses elasticities to GDP, such as shown in the Residential demand example in Figure 50.

¹³ Workshop on linking TIMES with economic model can be found at <u>http://www.iea-</u> <u>etsap.org/web/UCC Workshop14.asp</u> and <u>http://www.iea-etsap.org/web/Copenhagen Nov2014.asp</u> and summarized in *'Economic Impacts of Future Changes in the Energy System—Global Perspectives chapter* in **Springer Book** 'Informing energy and climate policies using energy systems models' 2015.

Figure 48: BY Calibration Demand Levels

Star	rt year	2013			Transport sector		
		Base Year Data per Sector		BASE YEAF	R DATA		
		Agriculture sector		* Light Duty			
				TLD	Transport: Light Duty Vehicles	5.61	Bv-km
		AR DATA (from BY templates)	PJ	* Heavy Duty			
	AWP	Agriculture Water Pumping	0.04	TAI	Transport: Air	0.02	bn-pass-km
	ATH	Agriculture Tractors	0.04	TBU	Transport: Bus	0.22	Bv-km
		0	0.07	TMD	Transport: Medium Duty Trucks	0.34	Bv-km
	ATF	Agriculture Tractors - Farm Op.	-	THS	Transport: HDV Short Haul	0.26	Bv-km
	AOE	Agriculture Other Use	-	THL	Transport: HDV Long Haul	0.11	Bv-km
				TSH	Transport: Ship	0.17	bn-t-km
		Commercial sector		TRF	Transport: Rail - Freight	0.86	bn-t-km
				TRP	Transport: Rail - Passanger	1.65	bn-pass-km
	BASE YEA	AR DATA (from BY templates)	PJ	тст	Transport: Commercial Truck	0.82	Bv-km
	CSH	Commercial Heating	6.98	* Off Road			
	CSC	Commercial Cooling	2.79	тон	Transport: Off-road	-	Bv-km
	CWH	Commercial Water Heating	0.93				
*	сут	Commercial Ventilation	-		Industrial sector		
	ССК	Commercial Cooking	0.64		R DATA (from BY templates)	PJ	
	CLT	Commercial Lighting	0.46	ICHT	Chemical High Temperature	0.21	
	CRF	Commercial Refrigeration	0.98	ICLT	Chemical Low Temperature		
*	COF	Commercial Office Equipment	_	ICMD	Chemical Mechanical	0.93	
				IFHT	Food High Temperature	1.92	
		Residential sector		IFLT	Food Low Temperature	-	
				IFMD	Food Mechanical	0.92	
	BASE YEA	AP DATA	PJ	IIHT	Iron Steel High Temperature	1.46	
	RHH		46 26	IILT	Iron Steel Low Temperature	-	
	RHC	Residential Heating Residential Cooling	8.38	IIMD	Iron Steel Mechanical Non-metallic High Temperature	2.31 10.37	
		0	8.38 4.26	IMIT	Non-metallic High Temperature	10.37	
	RHW	Residential Water Heating		IMMD	Non-metallic Low Temperature	0.38	
*	RHR	Residential Refrigeration	0.54	IOHT	Other High Temperature	0.38	
	RHK	Residential Freezing	-	IOLT	Other Low Temperature	0.90	
	RHL	Residential Lighting	2.17	IOND	Other Mechanical	0.71	
	RHO	Residential Other Appliances	1.30	IONID		0.71	

Figure 49: Demand Drivers

			Deman	d Drive	rs					
		2013	2015	2020	2025	2030	2035	2040	2045	2050
Driver										
GDP	unit	6,187	6,589	8,017	10,232	13,059	16,667	21,271	27,148	34,649
Population	1000 persons	4400	4400	4511	4625	4742	4862	4984	5110	5239
Number of persons per household		3.80	3.76	3.67	3.58	3.49	3.40	3.32	3.24	3.16
GDP growth			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Population growth			0.00%	0.50%	0.50%	0.50%	0.50%	0.50%	0.50%	0.50
GDP/pop			3.20%	3.48%	4.48%	4.48%	4.48%	4.48%	4.48%	4.48
Number of persons per household			-0.50%	-0.50%	-0.50%	-0.50%	-0.50%	-0.50%	-0.50%	-0.50
Non-energy gas consumption			30.00%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Degree days base year	2553									
Degree days average	2584	1.012								
Number of years after first period	2									
Number of years per period after second period	5									
production index growth			2015	2020	2025	2030	2035	2040	2045	205
Chemical industry			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Food, Beverages and Tobaco industry			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Iron and steel industry			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Non-metallic minerals industry			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Other manufacturing industry			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Construction			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
Non-ferrous metals industry			3.20%	4.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00
		100	103.20	107.33	112.69	118.33	124.25	130.46	136.98	143.8

In addition to the demand drivers and elasticities, there are other factors that shape the demand projections, such as the number of persons per household, dependency of the service to the driver(s), saturation rate for the service, and so on. See the instructions on each of the sheets in the workbook.

Once all the components of the projection are assembled they are applied to prepare the forecast for each end-use, where the Residential sector is shown Figure 50.

Number of dwellings	2013	2015	2020	2025	2030	2035	2040	2045	2050
Population	4400	4400	4511	4625	4742	4862	4984	5110	5239
Number of persons per household	3.80	3.76	3.67	3.58	3.49	3.40	3.32	3.24	3.16
Total number of households	1158	1170	1230	1293	1359	1429	1502	1579	1660
destruction rate per year (destrate)	0.2%								
old dwellings	1158	1153	1142	1130	1119	1108	1097	1086	1075
new dwellings		16	88	162	240	321	405	493	584
TOTAL	1158	1170	1230	1293	1359	1429	1502	1579	1660
SPACE HEATING									
Correction for degree days of total heat d	46.82								
heat demand new/old (neffgain)	1.0								
AEI factor for old (deffgain) (per year)	0.01								
	2013	2015	2020	2025	2030	2035	2040	2045	2050
Elasticity for evolution with GDP/POP		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Heating demand per old dwelling	0.0404	0.0404	0.0405	0.0412	0.0419	0.0426	0.0434	0.0441	0.0449
Heating demand per new dwelling		0.0404	0.0404	0.0405	0.0412	0.0419	0.0426	0.0434	0.0441
Heating demand total old dwellings	46.8207	46.5963	46.2356	46.5662	46.8992	47.2345	47.5722	47.9124	48.2550
Heating demand total new dwellings		0.6588	3.5452	6.5664	9.8737	13.4311	17.2560	21.3672	25.7846
Total Heating Demand (PJ)	46.82	47.26	49.78	53.13	56.77	60.67	64.83	69.28	74.04
HOT WATER HEATING									
	2013	2015	2020	2025	2030	2035	2040	2045	2050
Elasticity for evolution with GDP/pop		1.0	1.0	1.0	0.8	0.6	0.4	0.2	0.1
Hot water demand per dwelling and per p	0.0010	0.0010	0.0012	0.0015	0.0018	0.0021	0.0023	0.0024	0.0024
Total Hot Water Demand (PJ)	4.26	4.54	5.53	7.05	8.62	10.09	11.31	12.12	12.71
SPACE COOLING									
Cooling demand per dwelling	2013	2015	2020	2025	2030	2035	2040	2045	2050
Apartments - Urban		4.00%	4.00%	4.00%	4.00%	4.00%	4.00%	4.00%	4.00%
Share of dwellings with cooling	30.00%	34.00%	38.00%	42.00%	46.00%	50.00%	54.00%	58.00%	62.00%
Elasticity for evolution with GDP/POP		0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
Cooling demand per dwelling	0.0241	0.0247	0.0265	0.0290	0.0317	0.0346	0.0378	0.0413	0.0452
Total Cooling Demand (PJ)	8.38	9.84	12.39	15.73	19.79	24.72	30.67	37.84	46.47

Figure 50: Residential Demand Forecast

10 Reference Scenario Guidance

The Reference (or sometimes called business-as-usual (BAU)) scenario strives to describe the evolution of the energy system following current practices and trends, while also reflecting all policies on the books that might influence that process. This scenario then serves as the point of departure for using TIMES to conduct an assessment of alternate futures in response to technology developments and policy interventions. But as discussed in the rest of this section there is a bit of an art to designing a viable Reference scenario that remains flexible enough to respond to these altered futures that are to be evaluated to assist with advising the formulation of such policies and measures.

10.1 The Need to Guide the Reference Scenario

A TIMES model makes all choices based upon a strict least-cost optimization. In principle, the better one depicts *all* relevant costs in the model, the better a Reference scenario can represent a BAU evolution of the energy system. However, there are many costs, both "hard" monetary costs and "soft" transaction, information, and consumer preference costs, that are difficult to value and enter into the model, but

which cause real-world economic choices to differ from the choices an unguided TIMES model would make. Some of these costs are identified here.

- Infrastructure costs: There may be limitations on the ability to deliver some fuels to some sectors/businesses/dwellings, for example, owing to limited distribution infrastructure. In principle, where data exists for these costs, they should be represented in the model and included in its calculations. However, estimating these costs can be a very geographically specific process, and so good data may not be available. An alternative approach may be to limit the penetration of the relevant commodity within each sector/demand according to the status of infrastructure availability, potentially including a projection of availability increase over time..
- Hardware conversion costs: Even where fuels are available, there may be costs associated with converting an individual plant/dwelling from one fuel to another. Again, in principle it would be desirable to include these costs in the model, but in practice they are very difficult to estimate, and often consumers have inertia in that they prefer to stay with what they know rather than move to something else.
- Information and transaction costs/limitations: New or advanced devices may not be as widely available as standard devices, or individual sector decision-makers may be unfamiliar with them and unaware of their life-cycle cost effectiveness, or they may simply prefer to stick with devices they are familiar with.
- Financing costs/ limitations: Although individual sector decision-makers may prefer a new/advanced device due to its lower life-cycle costs, they may not be able to finance the upfront capital cost.
- Split incentives: In the residential or commercial sectors, when capital costs are paid by building owners and fuel costs are paid by renters, mismatched incentives may prevent higher capital cost, higher efficiency devices and conservation measures (such as insulating) from being selected.
- Other consumer preferences: Consumers may value attributes of a more expensive fuel or device beyond its direct costs and efficiency. Examples include the range of consumer preferences for light duty vehicles (LDV) of different sizes, which must be imposed on the model to prevent it from meeting the entire LDV demand with compact cars, and preferences for more convenient and cleaner liquid and gaseous fuels over solid fuels for space heating.

In order to represent these costs, or the impacts of these costs, on real world choices, a variety of mechanisms are used to guide the Reference scenario to better reflect likely BAU outcomes.

10.2 Types of Guidance Mechanisms

To handle each of the challenges mentioned in the previous section a variety of available mechanisms and how they have been implemented in the TIMES-Starter Model are discussed in the next subsections. The sections that follow also discuss considerations that must be thought through in determining whether and how to adjust these mechanisms in policy scenario runs.

10.2.1 Forced operation of existing devices

Uncontrolled, the model may choose to abandon (stop using) existing power plants and demand devices before the end of their technical life, if they are sufficiently inefficient relative to new devices that the model finds it cheaper to replace them. While this may be efficient from a system perspective, in a BAU world, individuals rarely toss out an appliance or scrap a car before it "dies" and capital may be unavailable to prematurely replace existing devices. To represent this limitation, the existing devices may be forced to continue to operate at a specified fraction of their potential output but setting a gradually fading away lower bound.

In the TIMES-Starter model, this mechanism has been illustrated in the BOUNDLO scenario, which forces operation of existing power plants over the initial model periods at a declining percentage of their base year operation levels. Figure 51 shows a screenshot of the ProcData sheet of the BOUNDLO scenario template. As a starting point, it provides a lower bound on activity (ACT_BND-LO) for all existing electricity, CHP, and district heating plants in two model periods, 2015 and 2025, with interpolation between them. The lower bound for each process is calculated as the product of its base year electricity or heat production, as entered in the Calibration worksheet in the PP-BY template, and the desired minimum level of operation relative to that base year operation, as specified in the orange cells. Different control cells for ELE, CHP, and HPLs have been provided, and in 2025, ELEs have been further differentiated by fuel type, so that the user may easily release bounds on some processes in policy scenarios that might benefit from the option to reduce utilization of some units, for example, in a renewable portfolio standard (RPS) scenario. An example of such a reduction is provided in the BOUNDLO in several of the example policy scenarios in the Starter database.

The user may wish to customize this scenario by setting different forced operation levels for different plants, or by extending the time horizon of forced operation (taking care that no devices are forced to operate beyond their technical LIFE, which will lead to an infeasibility.)

A	в	c	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
ProcData	STARTER										•	•	•	•	•	*	•	•	•	•	•	•
Check Sheet	Prochame, Pro	coDesc. Units		Commilli	CommOUT																	
Parameter				100011						_												
	1						ACT_BND-LO	ACT_BND-LO	ACT_BND-LO	1	2015 MIN %	ELE	CHP	HPL		2025 MIN %	ELE-COA	ELE-GAS	ELE-RE	ELE-NUC	CHP	HE
Qualifier1							ANNUAL	ANNUAL	ANNUAL			20%	95%	3974	-		65%	60%	65%	65%	65%	.05
Qualifier2						100000							Evelyn		-		a		-			
		21 21	3 22	12 22	12	Activity	10.02	2220	6						im.m	operation lev	els, relativ	to base v	car operatio	n P		
	ProcName	ProcDesc		CommiN		10	2015	2025	0											1.0		
		Hydro (Dam) (Existing)	PJ,GW	PWRRNWHY			1.425	0.975	1													
			PJ.GW	PWRRNWIN			0.475	0.325	1													
•		Hydro (Pumped Storage) (Existing)	PJ,GW	PWRRNWHY			0	0	1													
	EEGASNAT-CC-X0		PJ,GW	PWRGASNA			2.85	1.95	1													
	EEGASNAT-CT-X0	Natural Gas - Combustion turbine (Existing)		PWRGASNA			3,18744	1.308528	1													
		Bituminous (Brown Coal) - Steam turbine (Ex		PWRCOAOE			1.425	0.585	1													
	EECOASBC-ST-X0	Sub-Bituminous Coal - Steam turbine (Existin		PWRCOASE			1.425	0.585	1													
	EECOALIG-ST-X0	Lignite - Steam turbine (Existing)		PWRCOALIC			1.425	0.975	1													
	EECOALKG-KG-X0	Lighte - Integrated Gasif (Existing) Combine		PWRCOALK			0.95	0.65														
		Nuclear - LWR (Existing)	PJ,GW	PWRNUCLER			10.45295155	7.152019481	1													
	EEBIOGAS-EN-X0			PWRBIOGAS			0.475	0.195	1													
	EEBIOGAS-GT-X0		PJ,GW	PWRBIOGAS			0.475	0.195	1													
	EEBIOGAS-ST-X0		PJ,GW	PWRBIOGAS			0.2375	0.0975	1													
	EEBIOGAS-CC-X0	Biogases - Combined cycle (Existing)	PJ,GW	PWRBIOGAS			0.2375	0.0975	1													
	EEBIOMSW-ST-X0	Municipal Waste - Steam turbine (Existing)	PJ,GW	PWRBIOMSV	ELCT		0.95	0.65	1													
	EEBIOPSF-IG-X0	Primary Solid Biofuels - Integrated Gasif. Con	PJ.GW	PWRBIOPSF	ELCT		0.646	0.442	1													
	EERNWGEO-ST-X0	Geothermal - Steam turbine (Existing)	PJ,GW	PWRRNWGE			0.475	0.325	1													
	EERNWSOL-TC-X0	Solar - Thermal Central (Existing)	PJ,GW	PWRRNWSC	ELCT		0.95	0.65	1													
		Wind - Onshore (Existing)		PWRRNWW			0.95	0.65	1													
	EERNWWIN-OF-X0	Wind - Offshore (Existing)		PWRRNWW			0.475	0.325	1													
	EHBIOPSF-ST-X0	Coupled Heat & Power Primary Sold Biofuels	- Steam turt				0.730769231	0.5	.4													
					LTHC																	
	EHCOAANT-ST-X0	Coupled Heat & Power Anthracte (Hard Coa	i) - Steam tur		ELCT THC		1.235	0.845	1													
	EHGASNAT-CC-X0	Coupled Heat & Power Natural Gas - Combin	ed cycle (Ex		ELCT THC		1.357142857	0.928571429	1													
	FHRASNAT, FN. X0	Coupled Heat & Power Natural Gas - Engine	(Fristing)	PWRGASNA			0.663636364	0.590909091	4													
	LINA JIER I CRIAU	cospectness a romer natural cas - Englie	(Long)		THE		a 0000030304	0.00000000														
	EHOLFOI-ST-X0	Coupled Heat & Power Fuel OII - (Existing)		PWROLFOI	ELCT		0	0	. 1													
•					LTHC																	

Figure 51: BOUNDLO Scenario Template

10.2.2 Market share constraints

Market share constraints can be imposed to provide "friction" in the model, slowing it from switching between devices or groups of devices used to produce a given commodity or commodities, or meet a demand. For example, they may be used to maintain the share of heating demand met by a particular fuel or kind of device (e.g., stove vs furnace), or to slow the penetration of a class of improved devices, such as LED light bulbs.

Devices can be forced to a minimum or maximum share of the consumption or production of a specified commodity (including energy service demands) using the FLO_MARK parameter for an individual device or the UCRULE_MARK user constraint to restrict a class or group of devices. To impose a market share constraint on a group of technologies, the TIMES user constraint capability is used along with ANSWER Named Filters. In order to group existing and new technologies together, and retain flexibility for the user to add multiple devices in each demand/fuel/type set, the user constraint mechanism has been used in the TIMES-Starter model instead of the FLO_MARK parameter. Section 10.3 provides a closer look at how these market share user constraints have been implemented in the TIMES-Starter model.

10.2.3 Hurdle rates

Although the model contains an overall global discount rate (G_DRATE) used to discount all costs to a base year, technology-specific discount rates may be set (using NCAP_DRATE) to represent financing costs applicable to a particular device or sector. (For example, power plants may face financing costs in the range of 10-15 percent, while residential purchases may face higher financing costs reflecting the use of credit cards or consumer loans for purchases.) This parameter may also be used to represent some of the soft costs described above that impede the penetration of more efficient devices. In this usage, the parameter is called a "hurdle" rate, as it represents additional impediments that a device must overcome in order to be attractive to consumers. For example, households may behave as if they face financing costs of 50 percent or higher, or they require very short payback periods in order to choose a more efficient device with a higher upfront cost.

While a technically sound approach to modeling these soft costs, hurdle rates can be challenging to use in practice because the appropriate values are difficult to estimate, and they introduce an artificial cost into the objective function that can make scenario cost comparisons difficult. So in TIMES what is usually done is apply hurdle rates to improved devices that slow their penetration in the Reference scenario to an acceptable level, which may mean keeping them out altogether. Then when doing policy scenarios that are aimed at lowering the barriers to the uptake of such technologies, the hurdle rates can be lowered and their penetration evaluated. To help with this task the TIMES report writer splits out the core investment expenditures (using the global discount rate) and the amount arising due to the higher discount rate. This helps give a sense of the potential costs and benefits of policies that have the potential to lower these hurdle rates.

{Although the templates contain entries for NCAP_DRATE (from USEPA), they are commented out for demand devices at this time (though are used for some heating plants (HPLs). A mechanism will be introduced where hurdle rates may be used in place to UC_<sect> new technology market penetration limiting constraints.}

10.2.4 BOUNDS and GROWTH rates on new technology uptake

It may be the case that for some technologies there are real-world impediments to them quickly being adapted and deployed. Examples might be that the necessary skills to put up wind turbines or the number of electric car charging stations are limited, or it may be difficult to gain consumer acceptance or financing for the first examples of new technology adoption. To handle such situations one may specify a direct bound on such a technology or use the TIMES dynamic bound user constraint facility that limits the penetration of a new technology based upon a specified percent increase over what is already deployed.

An example of the former has been provided in the TECH-BOUND scenario, which places an upper capacity bound (CAP_BND-UP) on the CHP technology EHGASNAT-CC, which proved to be very attractive in policy runs using the default Starter model configuration. The bound starts at 50 MW in 2015, the year of the device's first availability, and ramps up to 500 MW, or approximately 15% of total model capacity, by the end of the horizon. The user should review this bound to see if it is appropriate for their model, as well as assess whether there are other technologies that should receive a bound to directly slow their penetration rate.

10.3 A Closer Look at Market Share User Constraints in the TIMES-Starter Model

Market share constraints enable various aspects of the evolution of the energy system to be guided while not imposing explicit bounds on individual technologies options. The mechanism can be easily implemented in an ANSWER-TIMES model by use of the UC_MARK parameter, when a single commodity (demand) is involved. To identify the group of technologies that are to be subjected to a market share constraint, an ANSWER Named Filter is used.

The following categories of Named Filters have been created in the TIMES-Starter model, where the lead character is used as part of naming the filters and the corresponding market share constraints.

- <u>Fuel</u>: used to group devices by demand served and fuel consumed, for example, natural gas residential space heaters, or electric commercial cooking devices. Constraints built using these filters represent inhibitions on consumers switching fuels used to meet demands, due to infrastructure or hardware limitations, or familiarity and preferences.
- <u>Type</u>: used to group devices of any previously defined type. Constraints built using these filters may be used to slow penetration of a class of advanced devices, such as hybrid vehicles, or may represent limitations on the applicability of one type of device to meeting only a portion of a given demand, such as walk-in freezers, or rooftop commercial air conditioners. As described in Section 5.4, these types have been incorporated into demand device names by means of strict naming conventions in each SETUP sheet, in order to facilitate their use in building Named Filters.
- <u>Quality</u>: used to group devices of a similar designated level of energy efficiency. Options include: standard, improved, best, and advanced. (Note: "advanced" devices have higher efficiencies than those named "best".) As with types, these quality levels have been built into device names to facilitate their grouping into Named Filter sets. Example constraints using these filters have

been constructed to illustrate how to use them to slow penetration of high-efficiency devices across whole sectors and individual demands.

• <u>Size</u>: used only for size classes of light-duty vehicles, such as compact, full-size, minivan, etc. These vehicle classes have inherently different efficiencies due to their weight and configuration, and it is necessary for the user to specify the evolution of consumer preferences for these size classes.

These filters are built manually in ANSWER, using the Named Filters facility shown in Figure 52 for the natural gas devices meeting the Residential Water Heating demand. The resulting TIMES user-defined constraint equation can be previewed by going to the Constraints tab, highlighting the constraint of interest, and requesting via the right-mouse Resolve Rule-based Constraint, with the resulting equation components displayed along the lines shown in Figure 53.

Figure 52: ANSWER Named Filter Specification Form

Name: RHW-F-G			escription:	ter Heating Device	oc - Natural Gao		
Comment		ļ,	tesidentiai vva	ler riedung Device	s - Naturai Gas	,	
Proce	sses to be In	cluded:					
			Process Sets	Input Comm Nam	Input Comm D	Input Comm S	Output Comm

Figure 53: ANSWER Resolve User Constraint Display

Like "*GASNAT"

Resolve Rule-based Constraint RHW-F-GASNAT-LO in region STARTER

Look for:

S)	Case Selection	Name:	SELSCEN
	Resolve	Desc:	Temporary Case comprising selected scenarios, used for Resolve Rule-based Constraint
	Scenario Details	Scen:	BASE, BY-AGR BY-COM, BY-PP, BY-RSD, DEMAND-REF, DUMMY, DUMMY-NRG, IND-UC, NT-AGR, NT-COM

The spread displays how the TS part of the Rule-based Constraint will be resolved at Run Model time for Case: _SELSCEN The TID part of the Rule-based Constraint will match what is displayed in the TID spread.

Scenario	Parameter	Region	Constraint	Side	Technology	Commodity	Ti	Bound	2	2015	20 2	2 2	20 20	2050
UC-RSD	UC_MARK	STARTER	RHW-F-GASN	-	RHWGASNAT-/	RHW	-	LO		0.7039				0.6039
UC-RSD	UC_MARK	STARTER	RHW-F-GASN	-	RHWGASNAT-	RHW	-	LO		0.7039				0.6039
UC-RSD	UC_MARK	STARTER	RHW-F-GASN	-	RHWGASNAT-I	IRHW	-	LO		0.7039				0.6039
UC-RSD	UC_MARK	STARTER	RHW-F-GASN	-	RHWGASNAT-S	RHW	-	LO		0.7039				0.6039
UC-RSD	UC_MARK	STARTER	RHW-F-GASN	-	RHWGASNAT->	RHW	-	LO		0.7039				0.6039

To complete the naming of the user constraints built in TIMES to control the market shares the sector, fuel, and sense are incorporated, as seen below for the list of current Residential share constraints, where RH = Residential Heating, H = Households, F = Fuel type constraint, GASNAT = the fuel, and LO = sense of the equation.

= "RHW"

Figure 54: Residential Market Share Constraints

 BHC-F-ELC-LO BHC-F-GASNAT-UP RHC-T-C-LO RHC-T-R-LO RHH-F-BIOPSF-UP RHH-F-ELC-LO 	STARTER STARTER STARTER STARTER STARTER STARTER	Residential Cooling - Share of ELC Residential Cooling - Share of GASNAT Residential Cooling - Share of Central Residential Cooling - Share of Room Residential Heating - Share of BIOPSF Residential Heating - Share of ELC
RHH-F-GASNAT-LO	STARTER STARTER	Residential Heating - Share of GASNAT Residential Heating - Share of OILFOI
B RHH-F-OILKER-LO	STARTER	Residential Heating - Share of OILKER
RHH-F-OILLPG-LO	STARTER	Residential Heating - Share of OILLPG
🖹 RHH-Q-AD-UP	STARTER	Residential Heating Quality Share - Advanced
🖹 RHH-Q-BE-UP	STARTER	Residential Heating Quality Share - Best
🖹 RHH-Q-IM-UP	STARTER	Residential Heating Quality Share - Improved
RHH-T-F-LO	STARTER	Residential Heating - Share of Furnace
RHH-T-H-LO	STARTER	Residential Heating - Share of Heat Pump
RHH-T-R-LO	STARTER	Residential Heating - Share of Radiant
RHH-T-S-LO	STARTER	Residential Heating - Share of Stove
RHL-T-C-LO	STARTER	Residential Lighting - Share of CFL
RHL-T-F-LO	STARTER	Residential Lighting - Share of Fluorescent
RHL-T-H-LO	STARTER	Residential Lighting - Share of Halogen
RHL-T-I-LO	STARTER	Residential Lighting - Share of Incandescent
RHL-T-L-LO	STARTER	Residential Lighting - Share of LED
RHW-F-ELC-LO	STARTER	Residential Water Heating - Share of ELC
RHW-F-GASNAT-LO	STARTER	Residential Water Heating - Share of GASNAT
RHW-F-OILFOI-LO	STARTER	Residential Water Heating - Share of OILFOI
RHW-F-OILLPG-LO	STARTER	Residential Water Heating - Share of OILLPG
RSD-Q-AD-UP	STARTER	Residential Quality Share - Advanced
RSD-Q-BE-UP	STARTER	Residential Quality Share - Best
🖹 RSD-Q-IM-UP	STARTER	Residential Quality Share - Improved

Another important consideration when setting up the market share mechanism is the sense of the constraint, that is whether it imposes an Upper or Lower limit on the fuel or technology group. Upper limits need to be applied when something is excessively attractive to the model and lower limits used when it is not attractive, but some minimum level must be met, which may differ for the TIMES-Starter and your model. The way to ascertain this is to look at whether the constraints are binding (hitting their limit) or not by looking at the UC_MARK.M parameter in ANSWER or the Marginal Prices (User Constraint) table in VBE. For the Residential natural gas for water heating constraint above, notice that there is a lower bound applied as gas is not the least-cost choice for water heating in the Starter model and so it must be forced in, which can be seen in the ANSWER snapshot of constraint marginals shown in Figure 55. Where there are no marginals, the limit has not been reached, indicating that perhaps the sense of the equation needs to be reversed. This trial and redo process needs to be completed for all the market share constraints as part of readying the Reference scenario.

Figure 55: Market Share Constraint Marginals

Name	Regio	n	Des	cription							Stat	tus 🔺		nagement-	
RHL-T-L-LO	STAR	TEP	R Res	idential Lighting - Share	of LED									Iser-Defined	ł
RHW-F-ELC-LO	STAR	TEP	R Res	idential Water Heating -	Share of ELC								Constrain	nt:	
RHW-F-GASNAT-LO	STAR		R Res	idential Water Heating -	Share of GASNA									1 -	
RHW-F-OILFOI-LO	STAR	TEP	R Res	idential Water Heating -	Share of OILFOI								New	Copy	Delete
RHW-F-OILLPG-LO	STAR	TEP	R Res	idential Water Heating -	Share of OILLPG	i									L
RSD-Q-AD-UP	STAR	TEP	R Res	idential Quality Share - A	dvanced								Select	All Items	Move
🗎 RSD-Q-BE-UP	STAR	TEP	R Res	idential Quality Share - B	est							=			
RSD-Q-IM-UP	STAR	TEP	R Res	idential Quality Share - Ir	nproved							-			
Subset Parameters: 🔹	User-Defi	ned	Constrair	it									-	TS dat	a
Case	Parameter		Region	Constraint	Commodity	TimeSlice	2013	2015	2020	2025	2030	2035	2040	2045	2050
REF-01	UC_MARK.M	?	STARTER	RHW-F-GASNAT-LO	RHW	ANNUAL	0.0000	3.1737	3.3655	3.5371	2.4467	2.6809	2.3869	2.0905	1.8266
S_C02LIM-20	UC_MARK.M	?	STARTER	RHW-F-GASNAT-LO	RHW	ANNUAL	0.0000	0.2028	0.7832	0.8738	0.0000	0.0000	0.0000	0.0000	0.0000
S_C02LIM-30	UC_MARK.M	?	STARTER	RHW-F-GASNAT-LO	RHW	ANNUAL	0.0000	2.5177	0.0000	4.5752	153.5564	0.0000	0.0000	0.0000	0.0000
S C02LIM-50	UC MARK.M	2	STARTER	RHW-F-GASNAT-LO	BHW	ANNUAL	0.0000	6.3474	51.2823	10.4460	669.9910	5.0156	0.0000	0.0000	0.0000

The user constraints have been constructed in AT version 1 workbooks, one for each of the COM, RSD, and TRN sectors, providing a starting point for users to adjust to their own study area. Figure 56 shows a screenshot of the fuel and technology type constraints in the UC-COM template. The 2015 share values are linked to the useful energy shares by technology group calculated on the Calibration sheet of each BY sector workbook, as discussed in Section 5.4.2.1. The 2050 values are loosened from the starting values by means of the orange-shaded control cells in the upper right corner. These cells specify the fraction of the demand that is free to move into/out of the relevant fuel/type by 2050. Note that because we tend to use the UPper bound on fuels that are less desirable (like coal and biomass) or have limits on availability and/or infrastructure (like district heat), the default relaxation value for the UPper fuel UCs has been set lower than for the LOwers.

Figure 56: UC-COM Template

Below the fuel and type constraints on this sheet are sample device quality constraints, one for each of ADvanced, BEst, and IMproved devices, as shown in Figure 57. Examples have been provided for the entire commercial sector and for the commercial space heating demand. The 2050 maximum penetration for each quality level is specified in the bottom row of orange control cells.

Figure 57: Device Quality Constraints in the UC-COM Template

A	8	C	D	E	F	G	H	1	1	K	1.	M	N	0	P	Q	R	S	T	U	V
S&TID DATA	STARTER																				
	1.																		LO	UP	
Check Sheet		_	_															ation Factor	10%	3%	
	Parameter	Arg1	Arg2	Arg3	Arg4	Arg5	Arg6	IF Oot									Tech Relax	sation Factor	10%	10%	
Populate DataYears	-							I/E Opt									Max	2050 share	AD 25	BE	IM C
	Parameter	Arg1	Arg2	Arg3	Arg4	Arg5	Arg6	or Value	2013	2015	2020	2025	2030	2035	2040	2045	2050				
	UCRULE MARK	CPL-T-D-LO		CPL-T-D	CPL		LO	5		0.70	1000				a descond		0.596				
	UCRULE_MARK	CPL-T-L-LO		CPL-T-L	CPL	1.	LO	5		0.29							0.194				
COM Tech Qualt	y Class by sector																				
	UC_RHSRT	COM-Q-AD-UP		+	4	-	UP	5		0											
	UCRULE ACT	COM-Q-AD-UP	LHS	COM-ALL	-	ANNUAL	14	5		-156							-2%				
	UCRULE_ACT	COM-Q-AD-UP	LHS	COM-Q-AD	1	ANNUAL	-	5		1							1				
	UC_RHSRT	COM Q BE UP					UP	5		0											
	UCRULE_ACT	COM-Q-8E-UP	LHS	COM-ALL	+	ANNUAL		5		-1%							-3%				
	UCRULE_ACT	COM-Q-BE-UP	LHS	COM-O-BE		ANNUAL		5		1							1				
	UC_RHSRT	COM-Q-M-UP					UP	5		0											
	UCRULE_ACT	COM O M UP	LHS	COM-ALL		ANNUAL		.5		.1%							-30%				
	UCRULE_ACT	COM-Q-M-UP	LHS	COM-Q-M		ANNUAL	+	5		1							1				
COM Tech Qualt	y Class by deman	d - heating exam	ple provided																		
	UCRULE_MARK	CSH-Q-M-UP		CSH-Q-M	CHB		UP	5		-196							30%				
	Logical Street in the																				

Because many policy goals may entail encouraging increased uptake of more efficient devices, the user may wish to release these quality constraints somewhat in policy scenarios. UC-50 and 90 versions of the UC workbooks, with correspondingly higher 2050 UPper bounds for these quality constraints have been provided. This issue is discussed further in the next section.

10.4 Considerations for Policy Analysis

All of the mechanisms described above, when properly applied, will serve to slow down change in the energy system away from its present configuration to one that uses different fuels and higher efficiency devices. When analyzing a policy that is designed to shift the evolution of the energy system, such as a carbon policy or an energy efficiency standard, care must be taken to determine whether and how any of these mechanisms should be loosened and how to interpret the results.

For example, a policy to promote energy efficiency will likely include measures that aim to reduce the "soft" costs described in Section 10.1. It may provide information to individual sector decision-makers about high efficiency options, offer subsidized financing, provide energy audits that identify least cost choices for consumers, or subsidize conversion costs. To evaluate the impact of these measures the user will need to loosen the mechanisms designed to represent these costs. Therefore, one way to model such a policy is to run the model with loosened guidance mechanisms and identify where the largest cost and energy savings occur. Keep in mind that when any of these mechanisms are loosened (that is, a lower bound is reduced or eliminated, an upper bound is increased or eliminated, or hurdle rates are lowered), the system cost will be reduced relative to the previously constrained scenario because the model has more freedom to make lower cost choices. In the case of this analysis, the total savings from loosening these mechanisms can be compared to the estimated costs of the policies and measures in order to determine their cost effectiveness. Alternatively, individual measures targeted at particular sectors or subsectors can be assessed by loosening only the relevant constraints/mechanisms (such as a residential energy efficiency policy that reduces hurdle rates or loosens constraints on the penetration of advanced devices.)

On the other hand, if a policy designed to induce change in the system – such a carbon constraint or price, or a standard that limits total final/primary energy or energy intensity – is implemented without loosening the Reference guidance mechanisms, the model may have little room to respond to the policy and/or the policy may be quite expensive. This approach simulates, for example, the imposition of a

carbon tax without any complementary measures designed to reduce transactions and other soft costs. In this case, the user may wish to compare four scenarios:

- The Reference scenario;
- A scenario with guidance mechanisms loosened, but no other policies imposed, to represent energy efficiency promotion measures;
- The policy scenario, keeping Reference level guidance mechanisms in place, and
- The policy scenario with loosening of guidance mechanisms, to represent the policy plus complementary measures.

Figure 58 provides an example, where the Base and Base with UC-50 represents the savings inherent with reducing the soft costs discussed above, and the costs increases of the RPS and CO2 scenarios, which use UC-50 represent the additional costs of the policies after implementation of the implied soft cost measures.

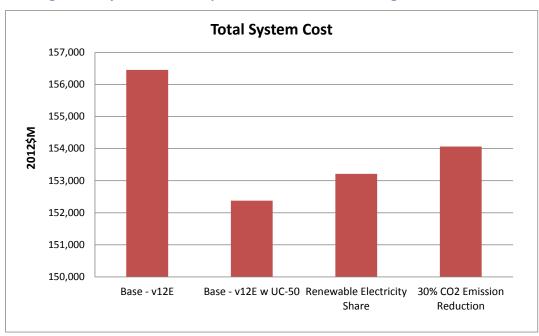


Figure 58: System cost example with and without relaxed guidance mechanisms

In all cases, what is necessary is to be clear about what is being modeled in each scenario and to check if each type and instance of guidance mechanism is appropriate or not to the policy under consideration, as discussed in the next section.

11 Alternate Scenarios Basics

Alternate scenarios are usually designed to test the impact of possible changes from the Reference scenario arising from policy, supply, price or technology interventions that may alter the evolution of the energy system. Therefore, these scenarios, with a leading prefix S_, are usually based upon imposing explicit changes from Reference scenario values. These can take the form of:

- A forced change in the absolute value of a Reference scenario result, e.g. decrease in final energy consumption of 25% by a target year;
- A forced change in the share of a Reference scenario result, e.g., a target share of 50% renewable electricity generation by a target year, and
- The introduction of a cost or tax on the system, e.g., imposing a price on carbon emissions.

In the case of those scenarios that are based upon setting a target derived from a Reference scenario level, these scenarios must be seeded with the appropriate Reference scenario values, which may be done via Copy/Paste from the appropriate VBE table, and then the desired policy described and imported into ANSWER as a separate scenario that can be then be included in model runs independently of or in combination with other such scenario variants. This ability to directly impose a policy goal or other alternative view of the future and have TIMES reconfigure the resulting energy system to find the new least-cost evolution of the energy system adhering to this new development is one of the key differences between an optimization framework such as TIMES and a simulation or accounting framework (such as LEAP¹⁴).

As mentioned in the previous section, under most policy situations the user will want to replace the Reference scenario UCs and other Reference guidance mechanisms that restrict the rate at which fuel switching and new technology uptake can take place with looser versions that permit more fuel switching and more rapid uptake of new technologies.

11.1 Managing ANSWER Scenarios

The Starter model includes a set of example scenarios for some of the most common types of scenarios used.

- Target for renewable electricity generation (called RPS for Renewable Portfolio Standard);
- Forced reduction in CO₂ emissions by a fixed percent from the Reference scenario results;
- Forced reduction in final energy consumption by a fixed percent from the Reference scenario results
- Forced reduction in electricity consumption by a fixed percent from the Reference scenario results (setup directly in ANSWER);
- CO2 Tax, and
- GHG emissions limits;

Management of these scenarios fall into essentially two categories, those based on the Reference that require model results to be exported from VBE and simpler scenarios that can be easily setup directly in ANSWER. To facilitate the creation and reuse of such common policy scenarios the TIMES-Starter comes with a series of simple workbooks that contain a VBE table (updated via either Copy/Paste or UpdateXLS) to handle the former, and a couple of examples of the latter built directly in ANSWER, as discussed in the rest of this section. It is important when using these workbooks to make sure that the

¹⁴ <u>http://www.energycommunity.org/default.asp?action=47</u>

Reference scenario and alternative scenario to be used/prepared and checked are BOTH selected as the Global Filter for the UpdateXLS operation.

The top-level result for each policy scenarios is the total discounted system cost (or model objective function), and a couple of explanations are necessary to understand change in the objective function results, shown in Figure 59. Note first off that the REF-01-50/90 scenarios are less expensive than the REF-01 itself. This is due to allowing a faster uptake of efficient technologies, which is also the case in the other S_policy runs. So the best indicator of the incremental cost of each S_policy run can be seen by comparing them against the REF-01-50 scenario, since all the policy runs use that improvement assumption in terms of the rate of technologies that are imposed for the REF scenarios, which gives the model a bit more freedom to shape more rapid change in the energy system. And in the case of the S_RPS scenario a higher level of hydro, solar, geothermal and wind actually enables a more cost effective configuration of the energy system then was otherwise possible, despite the extra requirement to use more renewables for electricity generation. Each of these findings is discussed in more detail under each scenario result.

Scenario 🔽	ОЫZ
REF-01	150,184
REF-01-50	146,119
REF-01-90	144,471
S_CO2LIM-20	146,647
S_CO2LIM-30	150,831
S_CO2LIM-40	151,466
S_CO2LIM-50	153,200
S_CO2TAX	214,428
S_GHGLIM-20	146,273
S_LIMFEC	150,252
S_LIMFELC	148,848
S_RPS	145,958

Figure 59: Policy Run Objective Function Values (Total Discounted System Cost)

11.2 Renewable Electricity Portfolio Requirement (Scen_RPS)

This scenario template allows the user to set a target for a minimum percentage of electricity generation to be produced from renewable energy sources by creating a user constraint that forces electricity generated by all renewable power plants (including CHPs) to be at least the target level of total electricity generation. The User Constraint is named P_RPS and is declared on the ITEMS sheet of this AT ver1 workbook. The target levels are specified to the model via the TS_UC tab, but they are generated on the REF&Target tab, where the Reference scenario results are captured by copy-pasting the specified VBE table as shown in the screen shot below. The VBE table shows total electricity generation & imports, and the calculations below the table provide the Reference scenario percentage of renewable energy generation to allow the target levels to be better determined. These target levels are user-specified in the orange cells and may vary over time.

The proper operation of the scenario may be checked on the SCEN&Target_checking tab – by using the same VBE table for electricity generation, but copy-pasting the S_RPS scenario results into this checking sheet, where any variation can be seen.

XI				-	RPS.xlsm - E							?		۰.
FI	ILE HOME	INSERT PAGE LAYOUT FORMULAS	DATA REVIEV	V VIEW	Acrobat	QuickB	looks					Gary	GOLDSTEIN	-
as	Calibri	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \\ \hline$	 ₩ Wrap Text ₩ Merge & 		ieneral \$ + % >	▼ 00.0.0	Conditiona Formatting		Cell	Insert Dele	te Format		t & Find &	
lip	board 5	Font 5	Alignment	G.	Numbe	er Da	ronnatting	Styles	Styles	Cel	ls	1110	ting	
Ì								Styles					ung	
30)		c											
4	-	С		D	E	F	G	н	1	J	K	L	Μ	
	Country	STARTER												
			Pat DeLaquil:		-									
		anario Electricity Consumption	Set VBE Global Filte Copy/Paste the tab					tricity Gene	eration & I	mports table	and			
+	Use this sheet	to set RPS Target Levels	copy/raste the tat	ne over the o	nu results, t	n use opua	LEALJ.					1		
+														
+		ectric Generation & Imports												
+	Active Unit: PJ													
+	Scenario	ProcessSetDesc\Period Biofuel-fired		2013	2015	2020	2025	2030	2035	2040	2045	2050		
	REF-01 REF-01	Biotuel-fired Biomass fired CHPs		1.68 0.77	3.02 0.95	2.35 0.95	1.68 0.95	0.41						
-	REF-01 REF-01	Coal fired CHPs		1.30	1.13	1.20	1.26	1.38	1.43	1.67	1.95	2.03		
2	REF-01 REF-01	Coal-fired		5.50	5.23	4.01	4.09	5.76	1.43	29.21	33.71	38.98		
3	REF-01	Gas fired CHPs		2.34	2.66	5.24	9.12	14.64	15.99	17.28	19.15	21.56		
	REF-01	Gas-fired		2.96	6.04	4.65	3.26	14.04	15.55	17.20	0.01	21.50		
	REF-01	Hydro		2.00	2.00	2.00	2.00	2.00	2.00	1.14	0.50	0.21		
;	REF-01	Imports Electricity		0.26	0.36	0.31	0.41	0.54	0.69	0.89	0.99	1.01		
,	REF-01	Nuclear		11.00	11.00	11.00	11.00	11.00	4.88	0.05	0.55			
3	REF-01	Other Renewables		3.00	3.71	4.64	5.15	7.00	5.49	3.87	3.49	3.74		
)	REF-01	Total		30.81	36.09	36.35	38.92	42.73	48.30	54.05	59.79	67.54		
)														
2														
3		Renewable generation in Reference scenari	o, GWh	7.45	9.68	9.94	9.77	9.41	7.49	5.01	3.99	3.96		
ŀ		Share of renewable generation in Reference	scenario	24%	27%	27%	25%	22%	16%	9%	7%	6%		
5														
5		RPS Scenario Cap				35%	35%	35%	35%	35%	35%	35%		
7		Pat DeLaguil:												
3		This data is loaded on the TS_UC sheet												
								(+)						_

Figure 60: Renewable Electricity Portfolio Requirement Specification Table

When running such an RPS scenario, it may be the case that the Reference scenario assumptions with respect to renewable potential in particular may not permit attainment of higher level targets. To accommodate this, the scenario file allows for an additional set of input changes that permit easy adjustment of the renewable resource supply bounds. The TS&TID_RNW Bounds tab reflects the levels of renewable energy resource potential in the Reference scenario. However, a renewable energy target scenario implies greater incentives to develop renewable energy resources, and those upper bounds highlighted in yellow have values that were increased for this scenario, as shown below.

Iing Resea	rch Thesauru	s Translat Languag	Comm	v Delete F	Previous Net Comme	at 🐼 Sh	now/Hide Con now All Comm now Ink	D	rotect Prot Sheet Work	tect SI		Allow Users Track Chan	Share Work to Edit Ran Jes *									
T24	•	• (*	f_{x}																			_
A	В	(0	D	E	F	G	H	1 I I	J	K	L	M	N	0	P	Q	R	S	Т	U	V
TS&TID D	STARTER																					
Check She			([
	Parameter	Arg1		Arg2	Arg3	Arg4	Arg5	Arg6	I/E Opt													
Populate DataYe ar																						
	Parameter	IRE/Grid	Process	Commodity	Commodity Group	nła	Timeslice	Bound Type	I/E Opt or Value	2013	2015	2020	2025	2030	2035	2040	2045	2050				
	resource p	otential						.76-														
* Renewab																						
	ACT_BND	RNWSUPB						UP	0													
	ACT_BND	RNVSUPB			-	-		UP	15									8.34				
	ACT_BND	RNVSUPB			-	-		UP	15									71.78				
	ACT_BND	RNWSUPB			-	-		UP	15									9.70				
	ACT_BND	RNWSUPB		-	-	-		UP	15									0.00				
	ACT_BND	RNWSUPB			-	-	ANNUAL	UP	15									0.00				
	ACT_BND	RNVSUPB			-	-		UP	15									0.00				
	ACT_BND	RNVSUPB			-	-		UP	15									0.00	Pat DeLa	auil		_
	ACT_BND	RNWSUPR			-	-	ANNUAL	UP	15									6.00	Overwrite	linked REF :	constinuel	
	ACT_BND	RNWSUPR	NWGEO-1	-	-	-	ANNUAL	UP	15									5.00		e RE resourc		
	ACT_BND	RNWSUPR	NWSOL-1	-	-	-	ANNUAL	UP	15									10.00	scenario.	e ne resourc	ca for the R	13
	ACT_BND	RNWSUPR	NWTWO-1	-	-	-	ANNUAL	UP	15									0.00	scenano.			
	ACT_BND	RNVSUPR	NWWIN-1	-	-	-	ANNUAL	UP	15									10.00				_
	1012010																					

Figure 61: Renewable Resource Potential Adjustment Table

The S_RPS run specification in ANSWER includes the UC-50 and BOUNDLO-REDuced versions of the Reference guidance scenarios, as discussion in Section 10.

11.3 CO2 Targets (Scen_CO2-xx)

The Starter model includes four example scenarios that force reductions in CO_2 emissions by 20, 30, 40 and 50% below the Reference scenario levels. The structure of this template, shown in Figure 62, is similar to that used for the RPS scenario, with a REF&Target tab where the Reference scenario CO_2 levels are entered from the indicated VBE table and the target levels, which vary over time, are calculated based on the reduction percentages entered in the yellow highlight cells.

Country	STARTER												
,				Pat DeLac									
Reference Scen	ario CO2 Emissions			Set VBE GI			eference S	cenario, sele	ect CO2 Emi	issions (by s	Sector) tab	ole and Copy	/Paste
	set CO2 Target Levels			The table o	ver the old	TO SUILS.	-	-	-				
use this sheet to	Set CO2 Taiget Levels												
Table Name: CO2	Emissions (by Sector)												
Active Unit: kt													
Scenario	CommodityDesc\Period	2013	2015	2020	2025	2030	2035	2040	2045	2050			
REF-12E	Carbon dioxide - Agriculture	32	24	25	26	28	30	33	36	40			
REF-12E	Carbon dioxide - Commercial	178	181	193	218	232	251	274	302	333			
REF-12E	Carbon dioxide - Industry	1266	1305	1433	1614	1817	2046	2303	2593	2920			
REF-12E	Carbon dioxide - Power Generation	3274	3316	3718	5017	7081	10588	13920	15894	17988			
REF-12E	Carbon dioxide - Residential	1601	1651	1747	1866	1939	2060	2258	2337	2377			
REF-12E	Carbon dioxide - Transport	2526	2622	2894	3061	3232	3522	3981	4426	5003			
REF-12E	Total	8877	9098	10010	11802	14329	18497	22770	25588	28660			
	Target, % below the Reference	0	0	<mark>15%</mark>	17.5%	20.0%	22.5%	25.0%	27.5%	30%			
	Target Emissions, Kt	8877	9098	8509	9736	11463	14335	17078	18551	20062			
						_							
							Anna:						
			Anna:				Insert CC	2 reduction	ו				
				s loaded on			target in	this row, by	y 🚽				
				Data_target			year						
			sheet				_						
			_										

Figure 62: CO₂ Emission Reduction Adjustment Table

11.4 Final Energy Consumption Reduction (Scen_LIMFEC)

The final energy consumption reduction scenario is often used to examine policies to promote energy efficiency. The structure of this template is similar to that used for the RPS and CO₂ scenarios, with a

REF&Target tab, shown in Figure 63, where the Reference scenario FEC levels, by sector) are entered from the indicated VBE table and the target levels, which vary over time, are calculated based on the reduction percentages entered in the yellow highlight cells. The FEC reductions are currently do not include the IND sector, but that will be corrected once the IND sector is built out.

Country	STA	RTER									
	mario Final Energy Consum	Pat DeLaquil: Set VBE Global Fil Copy/Paste the tag			cenario, sel	ect Final End	ergy Consu	mption (by S	Sector) tab	le and	
Table Name: Fi	nal Energy Consumption (by Se	ector)									
Active Unit: PJ											
Scenario	ProcessSetDesc\Period		2013	2015	2020	2025	2030	2035	2040	2045	2050
REF-12E	Agriculture		0.57	0.48	0.50	0.54	0.59	0.64	0.71	0.77	0.85
REF-12E	Commercial		9.35	9.57	10.44	11.74	13.21	14.40	15.45	16.55	18.21
REF-12E	Industry		33.17	34.18	37.55	42.28	47.60	53.59	60.34	67.94	76.49
REF-12E	Residential		67.38	66.84	66.84	68.20	69.81	72.76	77.40	80.19	80.44
REF-12E	Transportation		36.67	38.13	42.31	45.18	48.21	53.11	60.18	67.33	76.20
REF-12E	Total		147.15	149.20	157.65	167.94	179.41	194.50	214.07	232.77	252.19
		Anna: Enter reduction target									
	Reduction target (%)	by year in this row			5%	10%	15%	15%	15%	15%	15%
	Final Energy Consumption Cap		<u>/</u>	115	114	113	112	120	131	140	149
		Pat DeLaquil: This data is loaded on the TS_UC sheet									

Figure 63: FEC Reduction Scenario Adjustment Table

11.5 Reduction of Electricity Consumption (SCEN_LIMELC)

EE policies, such as described in the previous section, often result in an increase in electricity consumption since very often when forcing a reduction in total consumption TIMES may turn heavily to electric devices given their relative efficiency (which does not take into account the conversion losses at the point of generation). This scenario forces a reduction in electricity consumption as a counterbalance to this tendency. Its structure is similar to that used for the RPS and CO₂ scenario, with a REF&Target tab where the Reference scenario ELC consumption levels, by sector) are entered from the indicated VBE table and the target levels, which vary over time, are calculated based on the reduction percentages entered in the yellow highlight cells.

11.6 GHG Emission Reduction (SCEN_GHG)

The structure of this scenario is similar to the CO_2 reduction scenarios described in Section 11.3, but is applied to the basket of Greenhouse Gas (GHG) tracked in the model including CO_2 , CH4 and N2O.

11.7 Simpler Scenario Handling Directly In ANSWER

Some scenarios are not dependent on Reference scenario results and/or require only a small amount of data to be introduced to the model, and can be handled most expeditiously directly in ANSWER, for example:

- Applying a price on CO₂. A scenario file was created for this example, but the figure below shows the ANSWER data which defines this scenario requires only one line of data to enter the price level;
- Imposing a cumulative CO₂ limit. This scenario can be defined by a single entry value, which specified the limit on cumulative CO₂ emissions (using the COM_CUMPRD parameter) so that TIMES determines the optimal timing to achieve the desired reduction level.
- Adjusting the price of oil (other energy resource), and
- Changing the cost of a technology (e.g., a nuclear power plant).

The snapshots below show an example the CO_2 price in the form of the ANSWER parameter specifications that enable it to be applied.

TIMES-Starter(v12) - ANSWER-TIMES Energy Modelling
File Edit View Run Tools Functions Help
デ FF 通道文 Flower Data マ Regions Files Item:: Modified マ Scenarios: Non-BASE マ
Global TimeSlice Commodity CommGroup Process TradeProcess Constraint Stochastic Parameter
_ Items Filter
C Sets C Named *All Data Parameters
Name Description
COM_CSTNET Cost on Net of commodity (e.g. emissions tax)
Scenario Parameter Region Commodity TrineSlice 1/E 2013 2015 2020 2025 2030 2035 2040 2045 2050
Scottavic presentation presidenteer pregion commonly presenteer // 2013 2019 2020 2025 2030 2039 2040 2049 2050 2050 10000 10000 10000 0.8500 0.2000 0.2000 0.8500 0.2000 0.2000 0.8500 0.2000 0.2000 0.8500 0.20000
M DEGATIAN TELEVICE (ANNUAL D 0.000 0.1000 0.3000 0.7200 0.0000 1.0000 0.7200 0.0000 1.0000

Figure 64: Scenario Parameter Specification in ANSWER

12 TIMES-Starter VBE Database

VEDA Back-End (VBE) is a simple to use, yet very powerful platform for managing and digging into TIMES model results. Refer to the "Using VEDA-BE with ANSWER-TIMES" manual for a fuller description of how to use VBE in conjunction with ANSWER. Here we discuss how VBE is configured to support the TIMES-Starter model.

VBE relies on solid naming conventions, like those employed for the Starter model, to ensure that the user-defined sets created for the Starter model capture all the components of the RES needed to build tables that organize the raw model results into common analysis tables, such as primary energy use, final energy use, electricity or gas production, emissions by sector, etc.. For example, the Starter VBE has sets that group fuels by their "root name" (all oil-based commodities or all forms of coal), or power plant types according to the fuels they use (all coal-fired plants), as discussed in Section 3, so that the basic energy system analysis tables included in the Starter VBE provide meaningful and digestible results that can be presented to non-modelers.

12.1 TIMES-Starter VBE Sets

The current list of Commodity Sets employed for the Starter model is shown in Figure 65. These include basic sets for energy, electricity and heat, sectoral demand and fuel-based energy sets. Note that the sets with black text are generated by TIMES, and the red-text sets were created for the Starter model which may be augmented by the user. Figure 66 shows a partial list of the Process sets employed for the Starter model, with the Commercial space heating process set selected. Process sets are often used to create subsets for energy use, capacity additions, investment requirements and emissions, and other parameters according to the fuel or plant/device type or demand sector. The list of process sets should be studied to understand what has already been created and to avoid making duplicate sets.

		 CODE [16]	BEGION	DESCRIPTION
CODE [20] AGR COMM COMM ELC+ ENV HET+ NRG NRG_BI0 NRG_COAL NRG_ELC NRG_GAS NRG_HET NRG_MISS NRG_NUK NRG_OIL NRG_OIL NRG_RNW RES TRN	DESCRIPTION Agriculature Sector Demands Demand commodities ELC+ Environmental indicator commodities HET+ Industrial Demands Material commodities Energy carrier commodities Biofuels Coal Electricity Gas Heat Missing Energy Carriers!!! Nuclear Oil and Products Residential Sector Demands Transporation Sector Demands	CODE [16] COMCOAANT COMCOALIG INDCOAAIG INDCOAOBC INDCOAOBC INDCOAOBC PWRCOAAIG PWRCOAOBC PWRCOAOBC PWRCOAOBC RSDCOALIG SUPCOAANT SUPCOAAIG SUPCOAOBC SUPCOAOBC SUPCOASBC	REGION STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER STARTER	DESCRIPTION Anthracite (Hard Coal) to Commercial Lignite to Commercial Anthracite (Hard Coal) to Industry Lignite to Industry Bituminous (Brown Coal) to Industry Other coal product to Industry Anthracite (Hard Coal) to Power Sector Lignite to Power Sector Bituminous (Brown Coal) to Power Sector Sub-Bituminous Coal to Power Sector Lignite to Residential Supply - Anthracite (Hard Coal) Supply - Anthracite (Hard Coal) Supply - Bituminous (Brown Coal) Supply - Sub-Bituminous Coal

Figure 65: TIMES-Starter VBE Commodity Sets

Figure 66: TIMES-Starter VBE Process Sets (Partial List)

🔄, Examine Sets - [Proces	s]				
Process 💌	D 🖶 🗙 💽 🖿 🐘 📝 🛤 🔍				
Sets			CODE [31]	REGION	DESCRIPTION
CODE (102)	DESCRIPTION		CHBBIOPSF-B-ST	STARTER	Commercial Heating: Primary Solid Biofuels Furnace
		^	CHBBIOPSF-B-X0	STARTER	Commercial Heating: Primary Solid Biofuels Boiler-
C02BI0	CO2 emissions from Biomass/Biofuels	_	CHBCOAANT-B-ST	STARTER	Commercial Heating: Anthracite (Hard Coal) Furnace
C02C0A	CO2 emissions from Coal		CHBCOAANT-B-X0	STARTER	Commercial Heating: Anthracite (Hard Coal) Boiler-
CO2DSL	CO2 emissions from Diesel fuel		CHBCOALIG-B-ST	STARTER	Commercial Heating: Lignite Furnace-Standard
C02F0I	CO2 emissions from Fuel Oil	E	CHBCOALIG-B-X0	STARTER	Commercial Heating: Lignite Boiler-Existing 00
CO2GSL	CD2 emissions from Gasolline	-	CHBELC-B-IM	STARTER	Commercial Heating: Electricity Boiler-Improved
	CD2 emissions from Jet Fuel		CHBELC-B-ST	STARTER	Commercial Heating: Electricity Boiler-Standard
			CHBELC-B-X0	STARTER	Commercial Heating: Electricity Boiler-Existing 00
CO2KER	CO2 emissions from Kerosene		CHBELC-HA-IM	STARTER	Commercial Heating: Electricity Air Heat Pump-Impr
CO2LPG	CO2 emissions from LPG		CHBELC-HA-ST	STARTER	Commercial Heating: Electricity Air Heat Pump Stan
CO2NGA	CO2 emissions from Natural Gas		CHBELC-HA-X0	STARTER	Commercial Heating: Electricity Air Heat Pump-Exis
	Distribution Technologies		CHBELC-HG-IM	STARTER	Commercial Heating: Electricity Ground Heat Pump-I
	Demand Devices		CHBELC-HG-ST	STARTER	Commercial Heating: Electricity Ground Heat Pump-S
			CHBELC-HG-X0 CHBGASNAT-B-IM	STARTER STARTER	Commercial Heating: Electricity Ground Heat Pump-E
DMD_AGR	Agriculture		CHBGASNAT-B-IM CHBGASNAT-B-ST	STARTER	Commercial Heating: Natural Gas Boiler-Improved
DMD_AGR-MISS	*Missing*		CHBGASNAT-B-ST CHBGASNAT-B-X0	STARTER	Commercial Heating: Natural Gas Boiler-Standard
DMD_AGR-OTH	Other		CHBGASNAT-F-IM	STARTER	Commercial Heating: Natural Gas Boiler-Existing 00 Commercial Heating: Natural Gas Furnace-Improved
DMD AGR-TR	Tractors		CHBGASNAT-F-IM	STABLER	Commercial Heating: Natural Gas Furnace-Improved
DMD AGR-WP	Water Pumping		CHBGASNAT-F-ST	STARTER	Commercial Heating: Natural Gas Furnace-Standard
DMD_COM	Commercial		CHBGASNAT-H-ST	STABLER	Commercial Heating: Natural Gas Heat Pump-Standard
			CHBGASNAT-H-X0	STARTER	Commercial Heating: Natural Gas Heat Pump-Standard
DMD_COM-CCB	Space Cooling		CHBI TH-B-ST	STARTER	Commercial Heating: Heat Boiler-Standard
DMD_COM-CCK	Cooking		CHBLTH-B-X0	STARTER	Commercial Heating: Heat Boiler Standard
DMD_COM-CHB	Space heating		CHBOILFOI-B-IM	STARTER	Commercial Heating: Fuel Oil Boiler-Improved
DMD COM-CLT	Lighting		CHBOILFOI-B-ST	STARTER	Commercial Heating: Fuel Oil Boiler-Standard
DMD COM-CPL	Public Lighting		CHBOILFOI-B-X0	STARTER	Commercial Heating: Fuel Oil Boiler-Existing 00
			CHBOILFOI-F-ST	STARTER	Commercial Heating: Fuel Oil Furnace-Standard
DMD_COM-MISS	*** Missing ***		CHBOILFOI-F-X0	STARTER	Commercial Heating: Fuel Oil Furnace-Existing 00
DMD_COM-MSC	Miscellaneous	-	CHBRNWGEO-B-X0	STARTER	Commercial Heating: Geothermal Boiler-Existing 00

Sets are built by specifying the "rules" that properly identify all of the appropriate entities to be included in that set by means the VBE Edit Sets form, and only those elements, as shown in Figure 67. The set shown, PP_GAS, is the set of all gas-fired power plants, and it is specified as process belonging to the set ELE with input commodity names that include GAS anywhere in the name, but exclude any input commodities that also have BIO in their name. Note that the process (or commodity) name, description, and output commodity can also be used when specifying set rules.

3, Edit Sets - [Process]				
Process 💽 🗅 📑 🗙 🔳 🛍 🗌	2) M Q,			
Process 	M L Exclude: Do Not Exist in Sets [0] Exclude: Do Not Exist in Sets [0] CDE [96] DESCRIPTION CDP [96] DESCRIPTION CHP Coupled Heat Power Pla. CHP_BIO Biomass fired CHPs CHP_COA Coal fired CHPs CHP_COA Coal fired CHPs CHP_COA Coal fired CHPs CO2800 CO2 emissions from Biom CO2010 CO2 emissions from Diese CO20201 CO2 emissions from Jet Puel CO2021C CO2 emissions from Jet Puel CO2021C CO2 emissions from Natur DO212FT CO2 emissions from Natur DO212FT CO2 emissions from Natur DO212FT CO2 emissions from Natur DISTR Distribution Technologies DMD_AGR Agriculture DMD_SGR Agriculture DMD_SGR Agriculture DMD_SGR Agriculture DMD_SGR Agriculture DMD_SGR Agriculture IDMD_SGR Agriculture </th <th>Item Code [7] ♥ EEGASNAT-CC ♥ EEGASNAT-CCA ♥ EEGASNAT-CCA ♥ EEGASNAT-CTA ♥ EEGASNAT-CTA ♥ EEGASNAT-CTA ♥ EEGASNAT-CT×0</th> <th>Item Description Natural Gas - Combined cycle Natural Gas - Combined cycle (Advanced) Natural Gas - Combined cycle (Existing) Natural Gas - Combustion turbine Natural Gas - Combustion turbine (Advanced) Natural Gas - Combustion turbine (Existing)</th> <th></th>	Item Code [7] ♥ EEGASNAT-CC ♥ EEGASNAT-CCA ♥ EEGASNAT-CCA ♥ EEGASNAT-CTA ♥ EEGASNAT-CTA ♥ EEGASNAT-CTA ♥ EEGASNAT-CT×0	Item Description Natural Gas - Combined cycle Natural Gas - Combined cycle (Advanced) Natural Gas - Combined cycle (Existing) Natural Gas - Combustion turbine Natural Gas - Combustion turbine (Advanced) Natural Gas - Combustion turbine (Existing)	
Output commodity is like	Output commodity is like			
C AND O OR	C AND O OR			
She	vrtlist		Select All	Unselect All
		Cancel Updati		Close

Figure 67: VBE Process Set Specification

12.2 TIMES-Starter VBE Tables

The VBE database that comes with the Starter model includes a full set of energy systems analysis tables as shown in Figure 68. These tables have also been organized into subsets for Costs, Final Energy, Marginals, Power Plants, and Primary Energy by means of the VBE Table Master facility shown in the figure.

🦻 👆 🚽 🔁 🕍 🕍	🕑 🚧 🐁 🗁 🚟 🏢 🔍		
All Tables	Table Name [44]	Table Description	Date & Time
Cost Tables	Calib - CHP Fuel Consumption	CHP Fuel Consumption -BY	12/13/2015 11:43:43 A
Final Energy	Calib - Electric Generation (by Type)	Electric Generation -BY	12/13/2015 11:50:23 A
🔄 Marginals	Calib - Electric Plant Fuel Consumption	Electric Plant Fuel Consumption -BY	12/13/2015 11:44:03 A
PowerPlant Tables	Calib - Final Energy Consumption (by Sec & Fuell)	Final Energy Consumption (by Sector & Fuel) -BY	12/13/2015 11:17:48 A
Primary Energy	Calib - Heat Generation (by Type)	Heat Generation -BY	12/13/2015 11:51:08 A
Standard Tables	Calib - HPL Fuel Consumption	HPL Fuel Consumption -BY	12/13/2015 11:45:28/
	Calib - Supply - Dom	Supply - Domestic -BY	12/13/2015 11:57:13/
	Calib - Supply - Imports	Supply - Imports -BY	12/13/2015 2:24:25 Pi
		Gris input-outputs - BY	12/13/2015 1:35:12 Pi
	CO2 Emissions (by Sector)	CO2 Emissions (by Sector)	12/17/2015 1:44:07 PI
	CO2 Emissions (by Source)	CO2 Emissions (by Source)	10/4/2015 7:05:15 PM
	CO2 Emissions (by Source)-Details	CO2 Emissions (by Source)	10/4/2015 5:43:31 PM
	Electric Capacity (by Type)	Electric & CHP Power Plant Capacity	10/2/2015 10:54:59 Pl
	Electric Generation (by Type)	Electric Generation	12/23/2015 1:24:26 Pl
	Electric New Builds (by Type)	Electric & CHP New Power Plant Additions	10/2/2015 10:56:25 Pl
	Electric Plant Fuel Consumption	Electric Rent Fuel Consumption	10/2/2015 10:56:52 Pl
	Expenditure - Annual Payment New Builds (by Type)	Expenditure - Annual Payment New Builds (by Type)	10/2/2015 11:34:55 Pl
	Expenditure - Lumpsum New Builds (by Type)	Expenditure - Lumpsum New Builds (by Type)	10/4/2015 5:46:34 PM
	Expenditures - (by Type)	Expenditures - Summary (by Type)	10/2/2015 11:35:54 Pl
	Expenditures - Fuel Costs (supply & deliv)	Expenditures - Summary (by Type) Expenditures - Fuel Costs (supply & deliv)	12/29/2015 9:53:20 At
	Expenditures (by Investment)	Expenditures - ruer Costs (supply & denv) Expenditure (by Sector & Technology)	10/5/2015 5:25:47 PM
	Expenditures (by Sector - detail)	Expenditure (by Sector & type)	10/2/2015 11:36:02 Pl
	Expenditures (by Sector - detail)	Expenditures (by Sector & type) Expenditure (by Sector & Technology)	10/2/2015 11:36:02 PI
			10/2/2015 11:36:19 Pl
	Expenditures (by Sector)	Expenditures (by Sector)	
	Final Energy Consumption - AGR	Final Energy Consumption (by Sector & Fuel)	12/18/2015 3:09:32 Pt
	Final Energy Consumption - COM	Final Energy Consumption (by Sector & Fuel)	12/18/2015 3:09:16 Pt
	Final Energy Consumption - IND	Final Energy Consumption (by Sector & Fuel)	12/18/2015 10:09:17 /
	Final Energy Consumption - RSD	Final Energy Consumption (by Sector & Fuel)	12/18/2015 3:08:36 Pt
	Final Energy Consumption (by Fuel)	Final Energy Consumption (by Fuel)	10/2/2015 11:26:01 Pl
	Final Energy Consumption (by Sec & Fuel - detail)	Final Energy Consumption (by Sector & Fuel)	12/17/2015 2:56:58 Pt
	Final Energy Consumption (by Sector)	Final Energy Consumption (by Sector)	12/12/2015 4:05:02 Pt
	Final Energy Consumption (electricity by Sector)	Final Energy Consumption (electricity by Sector)	12/12/2015 8:48:08 PI
	Final Energy Consumption -TRN	Final Energy Consumption (by Sector & Fuel)	12/18/2015 3:09:00 PI
	🔲 🎫 Marginal Prices (detail)	Marginal Prices	10/2/2015 11:34:39 Pt
	Marginal Prices (eletricity)	Marginal Prices (eletricity)	10/14/2015 10:32:32 F
	Marginal Prices (UCs)	Marginal Prices - UserConstraints	10/8/2015 8:18:55 PM
	New Device Purchase - Commercial	New Device Purchase - Commercial	12/18/2015 10:24:11 /
	🔲 🥅 RPS Constraint Marginals	Marginal Costs	12/19/2015 9:35:22 Al
	🔲 🥅 Supply - Fuel & Source	Supply - Fuel & Source	10/2/2015 11:36:42 Pt
	Supply - Source	Supply - Source	10/2/2015 11:37:01 Pt
	Total System Cost	Total Discounted System Cost	10/6/2015 12:35:39 Pt
	🔲 🛄 Total System Cost - Annual Breakdown	Total Discounted System Cost	10/4/2015 6:02:42 PM
	🔲 🥅 Total System Cost - Breakdown	Total Discounted System Cost	10/6/2015 4:09:37 PM
	ZZDMY Check	ZZDMY Backstop Check	10/11/2015 7:02:52 PI
	< [m	

Figure 68: TIMES-Starter List of Tables

Tables are built in VBE by specifying the Attribute(s), which correspond to the desired model results, and the commodity and process Sets for which these results are to be organized and presented. Figure 69 presents the VBE Table specification form, which also oversees requesting preparation of the table for viewing, for the Table: Electricity Generation (by Type). The Atttribute VAR_FOut is commodity production from a process, the commodity specified is electricity (so as to avoid heat from the CHPs and any emissions perhaps accounted for at the power plant level (for CCS)), and the specified process sets give a breakdown for power plants and combined heat and power plants by fuel type. Note that PP_XXX is a null set that is designed to catch naming convention errors. Its includes the set of all power plants, but it excludes all the power plant subsets, so that if a power plant technology is added to the model, but does not get allocated to a subset, it will show in this null set as a flag to the user to properly define this process's subset – though it is expected to always not appear in the actual table presented in the cube.

ble definition (\All Tables)	Vintage	TimeSlice UserConstraint Scenario
ectric Generation (by Type)	Attribute	Commodity Process Period Region
arch for Tables	Code [30]	Veda Description
Electric Generation (by Type)	Cap_New	Veda Description Newly installed capacity and lumpsum investment by vintage and commissioning period
· @ Attribute	Cost Act	Annual activity costs
VAR FOut	Cost_Flo	Annual flow costs (including import/export prices)
© Commodity	Cost Fom	Annual fixed operating and maintenance costs
• Process	Cost Inv	Annual investment costs
• Period	Cost NPV	Total discounted costs by process/commodity (optional)
• eqion	Cost_Salv	Salvage values of capacities at EDH+1
- Vintage	EQ Combal	Commodity Slack/Levels
• TimeSlice	EQ_CombalM	Commodity Slack/Levels - Marginals
UserConstraint	EQ_Peak	Peaking Constraint Slack
© Scenario	EQ PeakM	Peaking Constraint Slack - Marginals
CommoditySet	062	Total discounted system cost
ELC+	Reg ACost	Regional total annualized costs by period
ProcessSet	Reg_obj	Regional total discounted system cost
CHP_BIO	Reg wobj	Regional total expected discounted system cost
CHP_COA	Time_NPV	Discounted value of time by period
O CHP_GAS	User_con	Level of user constraint
	User_conFXM	Marginal cost of fixed bound user constraint
PP_COAL	VAR_Act	Process Activity
	VAR_ActM	Process Activity - Marginals
PP_HYDR0	VAR_Cap	Technology Capacity
	VAR_Comnet	Commodity Net
	VAR_ComnetM	Commodity Net - Marginal
PP_RNW	VAR_Comprd	Commodity Total Production
	VAR_Eout	Electricity supply by technology and energy source
	VAB_FIn	Commodity Consumption by Process
	VAR_FOut	Commodity Production by Process
	VAR_Ncap	Technology Investment - New capacity
ctric Generation 4	VAR_NcapM	Technology Investment - Marginals
	VAR_NcapR	Technology Investment - BenCost + ObjRange
it: PJ 👻		
Include Null		
Include Null		
New Table Aggregation	Scenario	

Figure 69: VBE Table Specification for Electricity Generation by Fuel Type

Any of the existing tables can be viewed in the VBE dynamic data cube environment, as shown in Figure 70. VBE allows the analyst to dissect and reorganize the model results in order to determine the impacts of different model assumptions – here moving scenarios to the right so as to easily see where results have changed. Furthermore, as discussed in Section 13, the VBE tables can be exported to Excel, and in particular the AnalyticsXLS assembled for the TIMES-Starter model that presents multi-case comparison graphs to facilitate visualizing these impacts.

Figure 70: VBE Data Cube View

Electric Generat	tion										Electric Generation										
Original Units:	PJ Active Unit	GWh			•	Data	values	filter:			Original Units: PJ	Active Unit	GWh			•	Data	values	filter:		
Attribute 🔽 Com	modity 🔽 Region 🔽	"√intag Period	_	neSlice*	* 🔽 (Comi	nodityS	et 두 🏲 Pr	ocess* •			Attribute 🔽 Commodit	y 🔽 Region 🔽	*Vintage	∋* ▼ *Tir	meSlice*	· 🔽 Com	modity/S	et 🔽 🏞 Pro	ocess* 🗖		
Scenario 두	ProcessSet 두	2013	2015	2020	2025	2030	2035	2040	2045	2050			Period	-							
■REF-01	Biofuel-fired	82.4	87.7	100.3	143.5	249.9	372.6	471.9	678.6			Scenario 두	2013	2015	2020	2025	2030	2035	2040	2045	2050
	Coal-fired	341.8	543.3	872.2				3,676.0		6,528.1		REF-01	82.4	87.7	100.3	143.5	249.9	372.6	471.9	678.6	801.4
	Hydro	555.6	555.6	555.6		555.6				138.9		S C02LIM-20	82.8	64.5	110.3	160.2		328.4	417.5	603.0	711.3
	Other Renewables		2,932.9	2,932.9				2,589.2				S C02LIM-30	82.8	64.5	128.0	171.5		329.1	417.8	603.0	710.7
	Total	3,912.6	4,119.4	4,460.9	5,009.0	5,347.1	6,193.4	7,292.6				S C02LIM-50	75.2	70.5	416.0	416.7		306.3	402.6	625.8	
■S_C02LIM-20		82.8	64.5	110.3	160.2		328.4					BEF-01	341.8	543.3	872.2	1.377.1	1.608.7	2.471.3		5.228.7	
	Coal-fired	341.4	417.1	541.9	958.5	1,078.6		3,059.8	4,472.9	5,627.5			341.4	417.1	541.9	958.5	1.078.6				
	Gas-fired					99.5						S_C02LIM-20									5,627.5
	Hydro	555.6	555.6	555.6	555.6	555.6			138.9	138.9		S_C02LIM-30	341.4	417.1	416.7	728.2	1,541.0				5,621.0
	Nuclear					277.8	277.8					S_C02LIM-50	350.0	412.7	416.7	474.3		2,481.7	3,977.9	4,967.3	5,632.8
	Other Renewables					2,932.9	2,794.0	2,589.2	2,500.0	2,500.0	■Gas-fired	S_C02LIM-20					99.5				
=======================================	Total	3,912.6	3,970.0 64.5	4,140.5		4,944.3	5,646.1 329.1	6,622.1 417.8		8,977.8 710.7		S_C02LIM-50					99.5				
■S_C02LIM-30		82.8	417.1	416.7	728.2	1.541.0			4.472.9		∃Hydro	REF-01	555.6	555.6	555.6	555.6	555.6	555.6	555.6	138.9	138.9
	Coal-fired	555.6	555.6	555.6		555.6					-	S C02LIM-20	555.6	555.6	555.6	555.6	555.6	555.6	555.6	138.9	138.9
	Hydro Nuclear	555.0	555.6	555.6	555.0	277.8			130.3	130.5		S C02LIM-30	555.6	555.6	555.6	555.6	555.6	555.6	555.6	138.9	138.9
	Other Renewables	2.932.9	2 0 2 2 0	2 0 2 2 0	2.932.9	2,932.9		2.589.2	2 600 0	2 600 0		S C02LIM-50	555.6	555.6	555.6	555.6	555.6	555.6	555.6	138.9	
	Total	3.912.6		4.033.0	4.388.1	5.307.2	5.653.1	6.625.4		8,970.5		-	333.0	333.0	333.0	333.0	277.8	277.8	333.0	130.3	130.3
■S_C02LIM-50		75.2	70.5	416.0		0,001.2	306.3	402.6			-INGCIECI	S_C02LIM-20					277.8				<u> </u>
-3_0020101-50	Coal-fired	350.0	412.7	416.7	474.3	2 099 0		3,977.9				S_C02LIM-30						277.8			<u> </u>
	Gas-fired					99.5						S_C02LIM-50				17.5	277.8	277.8			
	Hvdro	555.6	555.6	555.6	555.6	555.6	555.6	555.6	138.9	138.9	■Other Renewables	REF-01			2,932.9						2,500.0
	Nuclear	-			17.5	277.8						S_C02LIM-20	2,932.9	2,932.9	2,932.9	2,932.9	2,932.9	2,794.0	2,589.2	2,500.0	2,500.0
	Other Renewables	2,932.9	2,932.9	2,932.9	2,932.9	2,932.9	2,794.0	2,589.2	2,500.0	2,500.0		S_C02LIM-30	2,932.9	2,932.9	2,932.9	2,932.9	2,932.9	2,794.0	2,589.2	2,500.0	2,500.0
	Total	3,913.6	3,971.6	4,321.1	4,396.8	5,964.7	6,415.2	7,525.2	8,232.0	8,983.5		S C02LIM-50	2,932.9	2,932.9	2,932.9	2,932.9	2,932.9	2,794.0	2,589.2	2,500.0	2,500.0

Note that for Commercial and Residential Heat Pumps while the output is properly report separately for heating and cooling demands, the fuel consumption to end-use services puts the total electric and/gas against the heating demand. Only by further processing the tables taking into consideration the amount of each demand serviced by the heat pump and the device efficiencies for each can the final energy consumed be apportioned properly to each end-use service.

An important and often used feature of VBE is the Global Filter, which enables temporary filters to be applied outside of any specification embodied in the table definition. This is most often used for Scenarios to facilitate focusing in on a subset of the scenarios. A second commonly used Global Filter is for Periods, when one is not interested in seeing results for all the periods in a run.

Once fluent in the use of VBE, users can create new Sets and Tables as needed for a particular analysis (see the ANSWER VBE manual).

13 Using the Analytics Results Comparison Graphing Workbook

The Analytics Results Comparison Graphing Workbook (AnalyticsXLS) is a VBA-enabled Excel workbook that allows a full set of analysis scenario results to be stored, updated and viewed according to smaller subsets for analyzing model results and preparing report and presentation quality graphics of model results. The VBE Update Excel tool is used to automatically update the results tables in the AnalyticsXLS whenever new or updated model run results are available. The DWG-Analytics "Smart" Excel Workbook User's Guide provides a complete description of how to effectively work with the AnalyticsXLS.

13.1 AnalyticsXLS Graphing Tables

Table 10 provides the complete list of the AnalyticsXLS (AXLS) tables currently developed for the TIMES-Starter model. In general, each sheet presents one set of model results for whatever combination of scenarios is selected. The model results for each table are first assembled on so-called "VEDA Dump" sheets, as also designated in Table 10, which correspond directly (and identically) with the associated VBE table. The Index sheet in the AXLS, corresponding to the table below, provides links to each graph comparison sheet and dump table.

Sheet Name & Link	Description	Dump Sheet Location & Link
Scenarios	Control sheet with all Scenarios	NA
Metrics 2030	Aggregate result metrics to 2030	NA
Metrics 2050	Aggregate result metrics to 2050	NA
System cost	Total discounted system cost (Objective Function)	VEDA Dump_Cost
Annual System Cost	Annual undiscounted components of the system cost	VEDA Dump_Cost
System Cost Breakdown	Components of the Total discounted system cost	VEDA Dump_Cost
Primary energy_ByFuel	Primary energy by fuel	VEDA Dump_Energy
Primary energy_Source	Primary energy by domestic or imports	VEDA Dump_Energy
Electricity generation_fuel	Electricity generation by fuel	VEDA Dump_Energy
Electricity capacity_fuel	Electricity capacity by fuel	VEDA Dump_Energy
Electric Power plant Builds	Capacity of new electric power plants	VEDA Dump_Energy
Power plant fuel use	Fuel use by all types of power plants	VEDA Dump_Energy
Final energy_Fuel	Final energy use by fuel type	VEDA Dump_Energy
Final energy_Sector	Final energy use by fuel type	VEDA Dump_Energy
CO2 Emissions_Sector	CO2 Emissions by sector	VEDA Dump_Emissions
CO2 Emissions_Fuel	CO2 Emissions by fuel used	VEDA Dump_Emissions
Expenditure - Summary	Summary of Total Annual Expenditures	NA
Expenditure_Type	Activity and O&M Costs	VEDA Dump_Cost
Expenditure_Investment	Investment expenditures by supply and demand sectors	VEDA Dump_Cost
Fuel Expenditure	Fuel Expenditures	VEDA Dump_Cost
Power Plant investment	Electricity powerplant newbuild investment	VEDA Dump_Cost
Sector Final energy_AGR	Final Energy Use by Application - AGR	VEDA Dump_Sector
Sector Final energy_COM	Final Energy Use by Application - COM	VEDA Dump_Sector
Sector Final energy_IND	Not Included yet	VEDA Dump_Sector
Sector Final energy_RSD	Final Energy Use by Application - RSD	VEDA Dump_Sector
Sector Final energy_TRN	Final Energy Use by Application - TRN	VEDA Dump_Sector

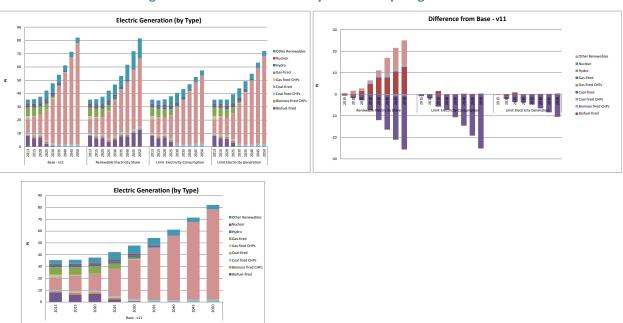
Table 10: List of AnalyticsXLS Tables for TIMES-Starter

13.2 Managing Scenarios

The definition, addition, deletion and updating of scenario results is all done from the Scenarios tab, which contains the complete list of loaded scenarios. These include the current Reference scenario and each of the example policy scenarios. The AXLS scenario management features are accessed through a

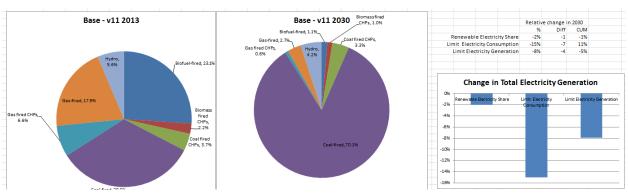
right click anywhere in the Scenarios tab, as shown in Figure 71. These commands allow scenarios to be added, deleted and renamed, and allow for the scenario results to be updated for all or only selected scenarios. The VBE Update Excel facility also allows for updating of all tables in the workbook, or only selected tables as specified in the Update Excel facility.

As also shown in Figure 71, the Scenarios tab shows (through orange color coding) which scenarios are selected for graphing, and the Refresh Graphs - All command is used to change this selection. Prepare for Update allows selective scenario updating by not updating any scenario when a "star" is placed next to the scenario name in col-A, in which case the user most also remember to set the VBE Global Filter accordingly. Finish Update undoes that process. See User's guide for detailed steps for updating the workbook.


Note that the VBE UpdateXLS functions is quite demanding and may take some time to perform the update operation. The Prepare for Update feature also changes Formula Calculation Options to Manual which greatly reduces the time the update takes. The Finish Update switches this back to Automatic refreshing all the links, formulas and thereby graphs in the workbook.

						Scenario Objective Functi	on Graph Data	Table
			Scenario Resu	Its for STARTER	Units	2012\$M		
								% from
	enari	<u>o</u>		escription		Scenario	STARTER	REF
F-11			Base - v11	Desturies		REF-11	296898.1	100%
CO2LIM-20 CO2LIM-30	*	Cu <u>t</u>		Reduction Reduction		S_CO2LIM-20 S_CO2LIM-30	298015 298613	100% 101%
CO2LIM-30		<u>С</u> ору		Reduction		S_CO2LIM-30	298687.5	101%
CO2LIM-50	1	Paste Option	ns:	Reduction		S_CO2LIM-50	298983.5	101%
IMFELC				nsumption		S_LIMFELC	423194.4	143%
IMGELC		W		neration		s_LIMGELC	297275.9	100%
RPS		Paste <u>S</u> pecia	l	tity Share		S_RPS	297243	100%
		Insert		_				
		<u>D</u> elete		_				
		Clear Co <u>n</u> te	nts	-				
		Filter	•					
		-						
		S <u>o</u> rt	•					
	1	Insert Co <u>m</u> m	ient					
		Format Cells		·				
		-		_				
		Pic <u>k</u> From D	rop-down List	_				
		Define Nam	e	-				
	2	Hyperlink						
		VEDA DUMF						
		Scenario		Add Scenario(s)				
		Graphing Sh	neets 🕨 🕨	Delete Scenario(s)				
	_			Rename Scenario				
	Calit	ori - 11 -	A A \$ * %					
	D			Refresh Graphs – A				
	в	∡ ≡ <mark>∨</mark> '	· <u>A</u> - ⊡ - 500 .	Prepare for Update				
				Finish Update				
				-				
				(* All)				
				Un* All				

Figure 71: Screenshot of AnalyticsXLS Scenarios tab


13.3 Example Graphing Sheets

The graphing sheets present their results in both tabular and chart form, Figure 72 shows the charts for Electricity Generation by Plant Type. The Reference scenario (1st one) is graphed separately and in combination with three other scenarios, and the difference between the scenarios and the Reference is also graphed.

Figure 72: Screenshot of AnalyticsXLS Graphing Sheet - 1

The graphing sheets also present pie charts that show how each scenario changes over time, and a bar chart that compares other overall changes between scenarios, as shown in Figure 73.

Figure 73: Screenshot of AnalyticsXLS Graphing Sheet - 2

13.4 Metrics Tables

There are two Metrics tabs which calculate cumulative results for selected model parameters out to 2030 and out to 2050. Figure 74 shows the cumulative metrics selected for the Starter model, which includes Total System Cost, Primary Energy Supply, Electricity Generation, Final Energy Consumption, New Power Plant Builds, Investment in New Power Plant Capacity, Fuel Expenditures, and CO₂ Emissions. The cumulative values are calculated from each respective graphing sheet, with care taken to accommodate the variable length (in rows 2-3) and number of periods, and to properly account for annual values versus per period results.

Figure 74:	Cumulative	Metrics	Tables to	2030
------------	------------	---------	------------------	------

2012\$M % Difference	Power Plant Builzs			
	GW	% Difference		
Base - v11 109,937 Base - v11 1	.28			
Renewable Electricity Share 109,874 -0.1% Renewable Electricity Share 1	.21	94.7%		
Limit Electricity Consumption 111,223 1.2% Limit Electricity Consumption 0	.96	75.1%		
Limit Electricity Generation 110,073 0.1% Limit Electricity Generation 1	.07	83.9%		
Scenario Primary Energy Scenario	Electricity	Investment		
	12\$M	% Difference		
Base - v11 5,245 Base - v11 3,	,190			
Renewable Electricity Share 5,226 -0.4% Renewable Electricity Share 2,	,907	-8.9%		
Limit Electricity Consumption 5,322 1.5% Limit Electricity Consumption 2,	,472	-22.5%		
Limit Electricity Generation 5,163 -1.6% Limit Electricity Generation 2,	,817	-11.7%		
Electrity Generation Scenario	Fuel Ex	penditures		
	12\$M	% Difference		
Base - v11 21 Base - v11 50),163			
Renewable Electricity Share 21 0.0% Renewable Electricity Share 49	,997	-0.3%		
	,462	4.6%		
Limit Electricity Consumption 21 0.0% Limit Electricity Consumption 52				
	0,098	-0.1%		
	0,098	-0.1%		
Limit Electricity Generation 21 0.0% Limit Electricity Generation 50		-0.1% missions		
Limit Electricity Generation 21 0.0% Limit Electricity Generation 50				
Limit Electricity Generation 21 0.0% Limit Electricity Generation 50 Final Energy Consumption PJ % Difference	CO2 E	missions		
Limit Electricity Generation 21 0.0% Limit Electricity Generation 50 Final Energy Consumption PJ % Difference Base - v11 293	CO2 E	missions		
Limit Electricity Generation 21 0.0% Limit Electricity Generation 50 Final Energy Consumption Scenario Scenario Base - v11 2,489 Base - v11 293 Renewable Electricity Share 2,485 -0.2% Renewable Electricity Share 276	CO2 E kt 3,340	missions % Difference		

Because these metric results are refreshed each time a new set of scenarios is selected, each Metrics tab also contains an Archive section, where updated results for each scenario can be saved using Copy/Paste Values to create a table with the complete set of results for all the scenarios in the workbook.

14 Procedures for Adapting TIMES-Starter

The TIMES-Starter model comprises all the modeling components necessary to build a model relevant to most any study area. However, it is only the starting point and besides the calibration activities discussed in Section 6, a series of steps needs to be followed to prepare the Starter model for the new situation. Each of the basic steps are described in this Section.

14.1 Changing Country Name

The first thing that one needs to do is establish the name of the study area, which for now we'll assume is a <country>. To accomplish this the following steps should be undertaking in the order listed.

- 1. Copy the TIMES-Starter folder to another folder name under the Answer_Databases folder.
- 2. Rename the TIMES-Starter(vXX).MDB to TIMES- <country>(v01).MDB.
- 3. Open the TIMES-<country>(vXX) database & edit the Region name, changing STARTER to <country>.
- 4. Repeat steps 2 and 3 for the TIMES-Starter(vXXxls).MDB for each region.
- 5. Replace **Starter** with <country> in the name of each of the templates.
- 6. In the EB_<country> (2013) template change **Starter** to <country> in cell B1 on the Energy balance tab
- 7. Open each XLS
 - a. Go to Data/Edit Links and change the references from EB_Starter to the EB_<country>, as well as any other XLS linked to according to the relationship shown in Figure 1.
 - b. Make sure the <country> is now reflected on the Setup sheet, so appears as the Region on each ANSWER load sheet.
 - c. save each XLS.
- 8. Open the <country>(vXX) database & reimport EACH scenarios, specifying the <country> XLSs instead of the now missing Starter XLSs.
- 9. Try a test run to replicate the REFxx already in the database.
- 10. In ANSWER remove the old model runs, keeping the definitions --- if desired.

With that your model is now ready for customizing to your area of study.

14.2 Customizing TIMES-Starter for Your Model

The roadmap to customize the TIMES-Starter for your situation entails each of the steps listed below. All the input data templates associated with each of the steps, and how to work with them, has been described earlier, so this just serves as a sequenced recommended checklist for getting your model set up. It is recommended that this process be undertaken slowly and carefully following sequentially the steps listed below. For each step the relevant template(s) and key sheets for that action are noted.

14.2.1 Changing Units, Periods and Timeslices *{Pending}*

For now users should stick with the Units, Periods and timeslices in the TIMES-Starter. In principle all these can be adjusted, but this will be addressed in a later version of the Starter model.

14.2.2 Adding New Commodities and Processes

The TIMES-Starter, when complete, will have a wide range of commodities and processes for most every situation. However, there may be unforeseen circumstances requiring the addition of a commodity/process. To insert a new commodity/process simply copy/insert a like element on the SETUP sheet of the relevant template and adjust the \$cell references to grab the right characters to properly

formulate the item name and description. The process is then to add to the declaration sheet and data sheets, adjusting their reference to SETUP if/as necessary. Then to adjust the RES connectivity, on the data sheet either use the "smart" buttons to grab the input and output commodities from the declaration sheets, copy them from another process, or link them manually yourself, then complete the data requirements as appropriate. If additional parameters are needed for any item they can be freely added to the end of the associated ProcData sheet. Also, if adding an existing process with base year installed capacity to the model, it should be appropriately reflected on the BY Calibration sheet. This is valid for all sectors.

The other, perhaps simpler, approach would be to usurp an existing Commodity/Process by simply changing the way its name/description are assembled, and adjusting data as appropriate. The only downside of this approach is that you are thereby breaking the connection with the US9r source data for that item.

Caution With Respect to Changing Component Names and Adding Subsectors

While the templates are set up to enable the user to change the names of commodities and technologies this is **HIGHLY DISCOURAGED** since the rules that govern the many ANSWER named TechFilters and VBE Set definitions (and perhaps Table structures) are based upon the TIMES-Starter conventions!!! Therefore, while the user is certainly free to include/exclude components, special care and in-depth understanding of the TechFilters and VBE Sets governing the model is essential before embarking on such an adventure.

When introducing a new sub-sector, consideration will also need to be given to updating and/or replicating the ANSWER TechFilters and VBE Sets as well!!!

Also, note that some resources supply options in the AT_<region>_SUP template require the user to put in local prices for them to work appropriately.

14.2.3 Setup and Calibration

Model setup and calibration were discussed in the earlier in Calibration section for each sector. The points here are listed as a reminder for the steps to be undertaken.

- 1. Plug in your energy balance [EB_<country>(year)];
- 2. Adjust the periods and timeslices [LoadCalibration, then copied into EB_<country>(TimePeriods)]
- Tailor the RES to your situation by eliminating and perhaps adding commodities/process not of interest/relevant or missing [SUP/BY/NT_<sector>(SETUP)];
- 4. Adjust the Calibration sheets, and
- 5. Run for 1 period refining the calibration by adjusting the EB and Calibration sheets.

14.2.4 Ready the Reference Scenario

Preparing the Reference Scenario was discussed in the earlier in Section 10. The points here are listed as a reminder of the steps to be undertaken, but refer to said section for specifics.

- 1. Adjust the energy price prices and potential/physical limits on resources and electricity/gas infrastructure [SUP(SupplyPrice/Potential+Grid&Pipeline)]
- 2. Adjust the demand drivers [Demand-REF(drivers)];
- 3. Introduce and forces operations [REF_BOUNDLO(ForceOp), and all known coming new builds (and NCAP_BND in the appropriate workbook, NT-PP in particular);
- 4. Review and adjust the Reference guidance mechanisms (fuel switching & rate of new technology penetration controls, as described in Section 10) [UC_*];
- 5. Introduce all known/on the books future policies [REF_POL(Policies)];
- 6. Run and refine the Reference scenario.
- 7. Make any necessary adjustments to the VBE SnT (and AXLS), (although this is likely not necessary unless names of commodities/technologies have been changed.

14.2.5 Try some Policy Scenarios

Trying policy runs was discussed in the earlier in Section 11. The points here are listed as a reminder of the steps to be undertaken, but refer to said section for specifics.

- 1. Paste your Reference scenario values into the standard policy scenario templates provided (e.g., CO2/EE/RE targets), and adjust the targets as desired.
- 2. Import the updated scenario files and run the scenarios.
- 3. Assess the model behavior in VBE and the AXLS.

14.3 Handling More than one Region *{Down the Road}*

In principle the design of the Starter model template will readily support the replication of the templates (or sheets in the templates) to enable multi-region models to be assembled.

However, for now users should stick with the single region model, but this will be addressed in a later version of the Starter model by creating a 2-region version of TIMES-Starter.

15 Some Advanced TIMES Features {*VFE DemoS examples – Down the Road*}

TIMES is also support by the VEDA Front-End (VFE) model management platform. The training course developed by ETSAP for VFE has a set (more sophisticated) process descriptions and model techniques that can be readily introduced to the TIMES-Starter platform, as a 2nd tier (intermediate) set of scenarios to demonstrate the implementation of each of these with the ANSWER-TIMES and TIMES-Starter environment.

Among the candidate features are:

- CHPs pass-out turbines;
- Lumpy (Discrete) investments / retirement;
- Storage technologies;
- UC growth constraint + UC total;
- Elastic demands;
- o Stochastics, and

o Many others.